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A B S T R A C T

This study developed a receptor model, comprising four non-negative matrix factorization algorithms: the
multiplicative update method; the optimal gradient method; the highly efficient, monotonic, fixed-point method;
and the conjugate gradient method. The feasibility and performance of the developed model for emission source
apportionment were assessed, using both a synthetic dataset, and an ambient PM2.5 dataset. The results from the
US EPA's positive matrix factorization (PMF) 5.0 model were used for the assessment. Modeled results for the
synthetic data showed that the range of factor contributions to most matrix elements solved by the four algo-
rithms covered actual values. Modeled results, using the ambient dataset as the input, showed that the four
algorithms in the developed model, and the PMF model, identified the same eight emission sources, and ap-
portioned similar source contributions to PM2.5. Comparisons between the modeled organic carbon, and the
elemental carbon source apportionments and radiocarbon measurements, suggested that combined application
of multiple algorithms could satisfactorily apportion emission source contributions for one, or a few, specified
samples among a receptor dataset, thus confirming the excellent source apportionment ability of the proposed
model.
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1. Introduction

Receptor models have been widely used to quantitatively apportion
sources, and their respective contributions to pollutants in the en-
vironment. This has been particularly true for the atmospheric en-
vironment, in recent years (Belis et al., 2013; Hopke, 2016). Under-
standing source apportionment is important for designing effective
strategies for reduction of contaminant levels in the environment. These
models are based on mathematical analysis of pollutant concentrations,
measured at a sampling site (receptor site), to infer the source types,
and estimate their contributions to monitored site pollutant con-
centrations (Hopke, 2016). Widely used receptor-based source appor-
tionment models include Principal Component Analysis/Multiple
Linear Regression (PCA/MLR), UNMIX, Positive Matrix Factorization
(PMF), and Chemical Mass Balance (CMB) (Belis et al., 2013; Hopke,
2016). Provision of source profiles to apportion mass is a prerequisite
for the use of the CMB model (Norris and Duvall, 2014) and such re-
quirements are highly restrictive, since the identification of all sources
influencing the data at a receptor site is often hard (Baek et al., 1997).
The PMF model is thus preferred, because it does not require prepared
source profiles to derive a source apportionment (Norris and Duvall,
2014; Wang et al., 2015).

The PMF model decomposes a matrix of speciated sample data into
two matrices, to quantify source contributions to the samples. The re-
sults of the source apportionments are obtained using the constraint
that no sample can have significantly negative source contributions.
The source types need to be interpreted and identified by users based on
their composition or fingerprints (Norris and Duvall, 2014; Paatero and
Tapper, 1994). The PMF model, which is principally an algorithm of
alternating non-negative least squares, was proposed and developed,
and has been updated, by inclusion of the conjugate gradient method,
to enhance its capacity and efficiency (Paatero et al., 2014; Paatero and
Tapper, 1994). The method has been applied to the newest version of
the PMF model (EPA PMF 5.0) released by the U.S. Environmental
Protection Agency (EPA) (Norris and Duvall, 2014). Both the algorithm
of alternating nonnegative least squares, and the conjugate gradient
method are used widely for solving non-negative matrix factorization
(NMF). In fact, PMF is a subset of NMF (Wang and Zhang, 2013). The
first NMF algorithm was a multiplicative update method (Lee and
Seung, 1999). It has been extensively applied to signal processing,
computer vision, machine learning, and data mining (Alexandrov and
Vesselinov, 2014; Fu et al., 2016; Karoui et al., 2012). In order to meet
the needs of the application in question, several types of algorithms,
including gradient descent, quasi-Newton, and hierarchical NMF have
been developed so far, and have been further modified and extended for
various special purposes (Berry et al., 2007; Cichocki et al., 2008;
Laudadio et al., 2016). The existing NMF algorithms can be divided into
four categories: basic NMF, constrained NMF, structured NMF, and
generalized NMF (Wang and Zhang, 2013). However, these algorithms
cannot produce realistic solutions when they are directly applied for
source apportionment of environmental contaminants, mainly because,
unlike PMF, these algorithms cannot comprehensively consider the
uncertainty of sample species (Norris and Duvall, 2014; Paatero et al.,
2014).

Multiple receptor modelling algorithms have often been used to
apportion source, for sets of environmental data, and more reasonable
source contributions could be identified by comparison of modeled
results (Nguyen et al., 2013; Shi et al., 2009b; Tauler et al., 2009).
Given the limitation of the existing NMF algorithms, and the advantage
provided by the aforementioned combined application, the aim of this
study was to build an improved source apportionment model. The new
model will be based on four different NMF algorithms, and our study
will examine its effectiveness by undertaking comparisons with the
results derived from the developed model and EPA PMF 5.0, using a
synthetic dataset and an ambient PM2.5 dataset. Radiocarbon mea-
surement was introduced for the assessment of model effectiveness.

2. Methods and materials

2.1. Model development

The NMF and PMF model algorithms have the same features. They
decompose a data matrix (V) into two matrices (W and H) as shown in
Eq. (1)
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where p is the number of factors and eij is the residual for a component
in the ith row and jth column of matrix V. However, in general, they
decompose a matrix by minimizing a different objective function. The
objective function (QNMF) of the NMF algorithm is expressed using
equation (2).
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where the matrix elements ofW and H are subject to constraints greater
than or equal to zero. The objective function for the PMF model (QPMF)
is expressed using equation (3).
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where the elements of matrices W and H are also constrained to values
greater than or equal to zero, while u is the uncertainty matrix, and
||•||F is the Frobenius norm. The difference between the two objective
functions is that the PMF model requires user-provided uncertainty data
(u) associated with an original matrix (V) to weight each element in V.
This design provides users with a convenient manner to consider the
confidence in the measurement data. For example, while data below the
detection limit can be retained, for use in the model after adjusting for
the associated uncertainty, they have less influence on the solution,
compared with measurements above the detection limit (Norris and
Duvall, 2014; Paatero et al., 2014).

Four NMF algorithms, which were originally used to decompose a
data matrix based on Eq. (2), were modified to decompose a data matrix
based on Eq. (3). The four NMF algorithms comprise a multiplicative
update method (MU) (Lee and Seung, 1999), an optimal gradient
method (OG) (Guan et al., 2012), a highly efficient monotonic fixed-
point algorithm (FP) (Li and Zhang, 2009) and a conjugate gradient
algorithm (CG) (Abd El Aziz and Khidr, 2015). These methods belong to
the gradient descent algorithm mentioned above. They iterate to find
local minima (Eq. (2)) because the solution domain of a decomposed
matrix is not a convex set due to the limitation of the non-negative
constraints. The methods start iteration by randomly generating initial
matrices of non-negative W and H, and terminate the iteration by set-
ting fixed iteration times, or a maximum allowable tolerance.

After considering the uncertainty matrix, the MU algorithm can be
rewritten as shown in equation (4).
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where the superscript T indicates partial derivatives to the elements of
W and H, and the superscripts k and k+1 are iteration counters. The OG
method associated with the uncertainty matrix can be expressed by
equation (5).
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where the meanings of superscripts T, k, and k+1 are the same as those
in equation (4), and ||•||2 is the Euclidean norm. The method alter-
natively updates H, α, and Y, until convergence to obtain an optimal
solution. The FP method associated with the uncertainty matrix can be
expressed as shown in equations (6) and (7).
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where the meanings of the superscripts T, k, and k+1 are the same as
those in equations (4) and (5). The rand in equation (6) indicates that
Wil at the k+1st iteration is set as a random number, when ||W·l|| is
equal to zero. The CG algorithm associated with the uncertainty matrix
can be written as shown in equation (8).
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where the meanings of the superscripts T, k, and k+1 are the same as
those in equations (4)–(6), and ||•||2 is the Euclidean norm. The method
iteratively updates d, H, and r, to score the optimal solution.

2.2. Experimental setup

The four NMF algorithms were compiled using Matlab R2016b
software, and two experiments were conducted to assess model per-
formance. To identify the most optimal factor contributions and pro-
files, two model experiments were run 100 times, with each experiment
commencing from a different starting point. The same iteration times
and starting point design were used for the final solution of the PMF
modelling (Norris and Duvall, 2014). The original matrices, as the
starting points for each run, were randomly generated and system-
atically modified using their respective approaches to chart the optimal
path to the best-fit solution (global minimum). The best solution was
typically identified by the lowest Q value along the path (equation (3)).
A simulation run starting from random matrices cannot guarantee that
the solution is the best solution, so therefore, to maximize the chance of
reaching the global minimum, it may instead find a local minimum
from the 100 runs mentioned above.

The first experiment used a synthetic matrix. To build a synthetic
matrix as the model input (matrix V, described above), a matrix with 23
rows and eight columns identified by the PMF model in a previous
study (Zong et al., 2016) was adopted for matrix W and a random
matrix with eight rows and 100 columns was generated for matrix H, as
described above. The matrices W and H were termed W0 and H0,

respectively, in order to distinguish them from the later-modeled ma-
trices, W and H. Matrix V was produced by multiplying matrix W0 with
matrix H0. An uncertainty matrix u was generated by multiplying ma-
trix V by 0.1. Both matrices V and u were used as input data, to derive
both the developed model, and the PMF model (Norris and Duvall,
2014).

The other experiment used a matrix of ambient PM2.5 components
as the model input for V. The PM2.5 samples were collected at the
sampling platform of a national station for background atmospheric
monitoring in North China from December 2011 to January 2013. The
national station is located on Tuoji Island, a small island with an area of
7.1 km2 located at the demarcation line between the Bohai Sea and
Yellow Sea as shown in Fig. S1 of the Supporting Information (SI). The
concentration data for organic carbon (OC), elemental carbon (EC),
water-soluble ions (i.e., sodium [Na+], ammonium [NH4+], potassium
[K+], magnesium [Mg2+], calcium [Ca2+], chloride [Cl−], nitrate
[NO3−], and sulfate [SO42−]), and metals (i.e., vanadium [V], man-
ganese [Mn], iron [Fe], chromium [Cr], nickel [Ni], copper [Cu], zinc
[Zn], arsenic [As], cadmium [Cd], and lead [Pb]), in PM2.5, formed the
input matrix (V), and its associated uncertainty matrix (u). The matrices
V and u were those used to derive the PMF model for model assessment
in a previous study (Wang et al., 2017). Sample information, and details
of the chemical analyses, are presented in the text of SI, and our pre-
vious study (Wang et al., 2014, 2017). The PM2.5 concentrations and
chemical components are summarized in Table S1 of SI. The same V and
u matrices were applied as input data to derive the developed model
and the PMF model.

2.3. Assessment of model performance

For the model experiment with a synthetic matrix as input, changes
of Q values with factor number increase were used to assess the capa-
city for determining source number. Decreasing Q values, with in-
creasing iterations, was used to assess calculative efficiency. The W
matrices decomposed by the developed model and PMF model were
compared with the matrix W0, to examine calculation precision.
Average absolute error (AAE) of the overall source contributions to
total mass, in the synthetic dataset, was used as an aggregative in-
dicator, to examine the calculating precision, which can be calculated
as shown in equation (9) (Shi et al., 2009b).

=
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n

a b
b

1 100%
i

i i

i1

n

(9)

where n is the number of the sources, ai is the estimated contribution of
the ith source, and bi is the true contribution of the ith source. A low
value for AAE indicates that the estimated contributions are close to the
true values. Collinearity was examined by correlation analysis among
factors in matrix W.

For the model experiment with ambient PM2.5 data as input, the
overall source contributions to the total mass, solved by the four al-
gorithms and the PMF model, were compared. Model performance was
assessed in more detail by comparing the source apportionment results
of carbonaceous components (OC and EC) in PM2.5, with radiocarbon
(14C) measurements. Recent studies have shown that 14C measurements
can unambiguously discriminate between fossil and non-fossil sources
of carbonaceous particles, as 14C is completely depleted in fossil fuel
emissions due to its half-life of 5730 years, whereas non-fossil carbon
sources (e.g., from biomass burning or biogenic emissions) show 14C
levels similar to those of atmospheric CO2 (Liu et al., 2013, 2014; Zhang
et al., 2015). Thus, 14C measurements of OC and EC fractions can di-
rectly quantify their fossil and non-fossil source contributions. Four
seasonally merged samples, and three outlier samples, of 14C mea-
surements, were used for the assessment. The four samples were winter
of 2011, and spring, summer, and autumn of 2012, termed as winter,
spring, summer, and autumn, respectively, for later analysis. The three
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outlier samples were those with the highest OC, EC, and PM2.5 con-
centrations for the entire sampling period, and were termed OCmax,
ECmax, and PMmax, respectively, for later analysis. For the comparison,
the modeled source contributions were classified into two carbon
source groups (fossil and non-fossil). The contribution fractions of fossil
or non-fossil carbon sources to OC and EC were subsequently compared
to the 14C results of the seven samples. The contribution fractions (R) of
non-fossil or fossil sources to OC or EC, classified from the developed
model and PMF results, were determined by using the formula shown in
equation (10).

=
= =

R W H W H/ij
k

ik kj
k

p

ik kj
1

n

1 (10)

where W and H are the factor contributions and factor profiles, re-
spectively, i represents the OC or EC species, j is a specified sample, n is
the number of fossil or non-fossil carbon sources, and p is the total
number of sources (Zong et al., 2016).

3. Results and discussion

3.1. Model assessment using synthetic data

Figure S2 of SI shows variation of Q values calculated by the four
algorithms, with modelling factor numbers increased from six to ten.
The Q values calculated by all four algorithms showed the most sig-
nificant declines in the model experiments with eight factors, indicating
that the fitting results simulated by the model experiments achieved
more significant more significant improvement. The factor number
equaled the source number to generate the synthetic matrix used in this
study, as mentioned above, suggesting that these algorithms could
capture the number of main sources quite well (Wang et al., 2017).

Figure S3 of SI displays the changes to the Q values brought about
through iterations modeled by the four developed NMF algorithms,
with eight factors. The four algorithms were subjected to iterations less
than or equal to 20000, or as long as the modeled Q value was less than
or equal to 2.0×10−5. The MU method showed the smoothest
downtrend in Q values among the four algorithms, and this value re-
duced to 98×10−5, until the iterations reached the specified upper
limit. Both the OG and FP algorithms generated a moderate downward
gradient for their Q values. The OG and FP algorithms reached the
critical limitation of 2.0×10−5, after 2534 and 1479 iterations, re-
spectively. The CG algorithm had the most rapid convergence, and its Q
value achieved the critical level of 2.0× 10−5 after just 65 iterations.
This highly efficient performance supported replacing the alternating
non-negative least square algorithm with the conjugate gradient
method, in the PMF model (Norris and Duvall, 2014; Paatero et al.,
2014). The iterations and Q value assessed by the PMF model, using the
synthetic matrix as input data are also shown in Fig. S3 of SI. After 290
iterations, the PMF model obtained its optimal solution, when the
corresponding Q value was equal to 3.0×10−5. The number of itera-
tions by the PMF model was three times that of the CG method used in
present study, although this number was clearly lower than those for
the other three algorithms in the developed model. The large number of
iterations for the PMF model might be due to additional considerations
in this model, because the CG algorithm has been termed as Multilinear
Engine-2, in the PMF model (Norris and Duvall, 2014; Paatero et al.,
2014). The Q value of the PMF model was larger than the Q values
determined by the OG, FP, and CG algorithms, and this was considered
as likely to be due to additional considerations in the PMF model. The
low Q values shown in Fig. S3 of SI indicated that, in general, the four
algorithms and the PMF model could decompose the synthetic matrix
satisfactorily. The downtrends of Q values indicated that CG was the
most efficient matrix decomposition method, followed by FP, OG, and
MU, among the four algorithms in the developed model.

To understand model performance in more detail, the modeled

errors were analyzed. Input data for the original matrix V was gener-
ated, by multiplying W0 and H0 (as described in the method section),
indicating that once matrix W or H was determined by these decom-
position methods, the other matrix was produced deterministically.
Thus, only W matrices were used to assess the performance of the al-
gorithms, by comparing them with matrix W0. Matrices of W, obtained
by the four algorithms in the developed model and PMF model, are
displayed in Tables S2–S6 of SI. The large differences between matrices
W and W0 require more attention, because these differences could
possibly distract model users from the truth, and affect source diagnoses
in real-life emission source apportionment. The differences between
matrices W and W0, generated by the four algorithms and the PMF
model, were merged into a data column and the column was sorted into
descending order. In this study, the first 2.5% and last 2.5% of the data
column were defined as data showing a significant difference (≥1.0
or≤−1.0) from the overall level. These significant differences were
distributed again into the four algorithms and the PMF model, as dis-
played in Fig. 1. The MU, CG, FP, OG algorithms and the PMF model
had 8, 12, 6, 9, and 22 such differences, respectively. The number
difference was attributed to them calculated by different algorithms
and random startup. A comparison of these differences showed both
positive and negative deviations for a specified element. For instance,
the difference in the first row and first column was less than zero, for
the algorithms MU and CG, and the PMF model, and positive for FP and
OG. This is an important property for source apportionment of con-
taminants if the algorithms are combined, because the actual values fall
within the variation ranges of the differences. This property is similar to
the finding that the combined application of different receptor models
can effectively improve source resolution results (Shi et al., 2009a,
2009b; Tue et al., 2013). Correlation analysis showed insignificant
correlation among source factors in matrices W solved by the four al-
gorithms (see Table S7 of SI), indicating these algorithms are well to
overcome the near collinearity problem (Shi et al., 2009a).

The average source contributions, assessed by the four algorithms
and PMF model, to the total mass of all samples in the synthetic dataset,
and their AAE, are listed in Table 1. According to the AAEs, the results
from the MU algorithm were the closest to true values, followed by the
algorithms CG, OG, and FP, and the PMF model. The assessments of
model performance were not inconsistent with the results assessed by
the comparison between matrices W and W0. For instance, the FP
method had the least number of significant differences between ma-
tricesW andW0, while exhibiting largest AAE value. This inconsistency
makes it difficult to determine which among the four algorithms is best,
but fortunately, the contribution values from all the sources were
within the scopes of the source contributions estimated by the four
algorithms, as shown in Table 1. The averaged AAEs of the four algo-
rithms were also less than those of each algorithm, and combination of

Fig. 1. Differences between matrix W decomposed by the four developed al-
gorithms and EPA PMF 5.0 for matrix W0.
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these algorithms and PMF model, suggesting that the combined appli-
cation of the four algorithms could achieve a narrower range of source
contributions, covering true source contribution. Therefore, the four
algorithms could be seen as single entity to apportion sources of am-
bient PM2.5 data.

3.2. Model assessment using ambient PM2.5 data

Using the findings from our previous study (Wang et al., 2017),
model experiments of eight factors were performed, using the devel-
oped model, and the results were compared with those simulated by
applying the PMF model (Wang et al., 2017). The modeled concentra-
tions of each factor for the four algorithms were correlated with those
provided by the PMF model and the correlation coefficients are listed in
Table S8 of SI. In general, seven factors had significantly high corre-
lation coefficients, with seven sources identified by the PMF model,
indicating their good correspondence. The seven factors were traffic
dust, industrial processes, biomass burning, vehicle emissions, mineral
dust, shipping emissions, and sea salt. The last factor generated by the
four algorithms did not correspond very highly to the factor of coal
combustion solved by the PMF model, but correlated well with the
factor of industrial processes (see Table S8 of SI). The ratios of OC to EC
calculated by the algorithms MU (3.71), CG (3.89), FP (0.79), and OG
(2.93) were higher than that derived by the PMF model (0.68). The high
ratios indicated that the last factor solved by the four algorithms con-
tained more combustion signals from domestic coal (Cao et al., 2007;
Wang et al., 2014). These analyses suggested that the last factor could
also be considered to be sourced from coal combustion.

Fig. S4 of SI displays a scatter plot of measured PM2.5 concentrations
versus modeled PM2.5 concentrations by the four algorithms and the
PMF model. The modeled and measured PM2.5 concentrations were
regarded as dependent variables and independent variables, respec-
tively, and a simple linear regression analysis was performed, with the
regression equations shown in Fig. S4 of SI. The slopes are close to
values of one, and these high correlation coefficients of the regression
equations indicate that these algorithms, and the PMF model, captured
the temporal variation in PM2.5 concentrations well. The algorithms
MU, CG, and OG have slopes closer to one, and smaller intercepts, than
those provided by the FP and PMF models, suggesting the stronger
apportionment capability of these three algorithms.

Fig. 2 displays the averaged contributions of the eight sources to the
PM2.5 mass concentration apportioned by the four algorithms and the
PMF model. In general, these methods make similar source contributions
to the PM2.5 mass concentrations, as indicated by the significant corre-
lation coefficients among them in Table S9 of SI. Statistical source con-
tributions to PM2.5 mass concentrations apportioned by these four al-
gorithms showed that biomass burning, coal combustion, shipping
emissions, mineral dust, sea salt, industrial processes, vehicle emissions,
and traffic dust contributed 25.5% ± 5.64%, 15.6% ± 3.99%,
13.3% ± 3.04%, 13.2% ± 2.18%, 9.54% ± 3.06%, 9.41% ± 1.43%,

9.02% ± 1.67%, and 4.38% ± 3.28%, to the PM2.5 mass concentra-
tions, respectively. Biomass burning was identified as the largest PM2.5

mass concentrations contributor, although the value was lower than that
apportioned (27.5%) by the PMF model. A review study compared the
source apportionments of PM2.5 solved by the PMF and CMB models, and
found that the former's solutions showed a strong possibility that the
contribution of biomass burning to PM2.5 was overestimated (Zhang
et al., 2017). The relatively low contribution of biomass burning could
suggest that the combined application of the four algorithms overcame
the overestimation of the contribution of biomass burning to PM2.5, ap-
portioned by the PMF model. In addition, such contribution fractions
(mean ± standard deviation) were likely to be more accurate than an
exact value of source apportionment, identified by a model, because the
actual values fall within the contribution range of synthetic matrix V,
solved by the four algorithms, as illustrated in Section 3.1.

3.3. Model assessment based on 14C measurements

According to the source types described in Section 3.2, coal com-
bustion, shipping emissions, vehicle emissions, and industrial processes
were classified as fossil sources, while biomass burning and sea salt
were merged into the non-fossil source (Wang et al., 2017; Zong et al.,
2016). Mineral dust and traffic dust were not considered in this clas-
sification, as they could not be apportioned quantitatively into either
fossil or non-fossil sources. The contributions of the two unsorted
sources make us assess only irrelevant source apportionments, by the
algorithms and the PMF model, according to the overestimation of the
source contributions classified from the simulated results, compared

Table 1
Average source contributions to the synthetic matrix.

Source Synthetic contributions Estimated contributions

MU OG FP CG PMF Ave(4) Ave(5)

Source1 11.45 10.72 11.90 11.98 10.54 7.58 11.28 ± 0.66 10.54 ± 1.60
Source2 15.07 16.20 18.18 17.54 14.58 10.20 16.63 ± 1.38 15.34 ± 2.85
Source3 11.35 11.32 10.30 10.01 15.50 7.71 11.78 ± 2.20 10.97 ± 2.56
Source4 13.66 14.63 14.65 14.87 13.60 8.89 14.44 ± 0.49 13.33 ± 2.26
Source5 12.84 11.86 8.91 11.01 12.85 14.54 11.11 ± 1.39 11.79 ± 1.85
Source6 12.05 10.50 12.06 9.91 9.96 13.47 10.61 ± 0.87 11.18 ± 1.39
Source7 11.86 11.75 11.91 12.50 11.63 23.43 11.95 ± 0.33 14.24 ± 4.60
Source8 11.71 13.02 12.09 12.18 11.03 14.19 12.08 ± 0.71 12.50 ± 1.05
AAE 6.73 9.43 10.37 9.15 34.63 6.28 7.19

Note: Ave(4) and AVE(5) are averaged results of the four algorithms, and the four algorithms and PMF model, respectively.
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Fig. 2. Averaged contributions of eight sources to PM2.5 mass concentrations
solved by the MU, OG, FP, and CG algorithms, and the PMF model. The eight
sources are traffic dust (TD), industrial processes (IP), biomass burning (BB),
vehicle emissions (VE), mineral dust (MD), shipping emissions (SE), sea salt
(SS), and coal combustion (CC).
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with 14C measurements (Zong et al., 2016). Such a comparison as-
sessment was described in the SI, as text, Table S10, and Fig. S5.

Given that traffic dust is thought to contain a higher fraction of
fossil carbon than mineral dust, we classified traffic dust as an addi-
tional fossil source, and mineral dust as an additional non-fossil source
to estimate the performance of the developed model. The method was
confirmed as a suitable tool to assess the modelling capacity of the PMF
model in our previous study (Wang et al., 2017). After this addition, the
comparisons between 14C measurements and the contributions from
fossil and non-fossil sources to OC and EC apportioned by the four al-
gorithms, and the PMF model, have been listed in Table 2. Most 14C
measurements were in the range of the source contributions appor-
tioned by the four algorithms, indicating that the developed model
could give more reasonable source apportionments than those identi-
fied by the PMF model, particularly with respect to the three outlier
samples. A previous study demonstrated that the PMF model could
capture the source apportionments of the four seasonal samples better
than those of the three outlier samples (Wang et al., 2017). The de-
veloped model could capture the source apportionments for one or a
few specified samples better, demonstrating its excellent capacity for
diagnosing source contributions within a short period, such as a haze
event.

4. Conclusions

In this study, a receptor model including four NMF algorithms,
namely MU, OG, FP, and CG, was developed for emission source ap-
pointment. To examine the feasibility and performance of the model,
synthetic and ambient PM2.5 datasets were decomposed and analyzed
by the developed model. In addition, the results of the PMF model were
used for the assessment. In the scenario with the synthetic dataset, the
CG algorithm showed the least convergence steps, followed by the FP
and OG algorithms under the same error tolerance, while the MU al-
gorithm had the slowest convergence speed. The range of factor con-
tributions to most matrix elements solved by the four algorithms cov-
ered the actual values. The model scenario using the ambient dataset as
input showed that both the developed model and the PMF model could
satisfactorily capture temporal variations to PM2.5 concentrations. The
four algorithms in the developed model and the PMF model identified
the same eight emission sources, and apportioned similar source

contributions of PM2.5. Comparison between the modeled OC and EC
source apportionments, and 14C measurements suggested that the
combined application of multiple algorithms could adequately appor-
tion the source contributions for some relatively complicated receptor
samples.
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