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A B S T R A C T

Air pollution in urban atmosphere directly affects public-health; therefore, it is very essential to predict air
pollutant concentrations. Air quality is a complex function of emissions, meteorology and topography, and ar-
tificial neural networks (ANNs) provide a sound framework for relating these variables. In this study, we in-
vestigated the feasibility of using ANN model with meteorological parameters as input variables to predict ozone
concentration in the urban area of Jinan, a metropolis in Northern China. We firstly found that the architecture
of network of neurons had little effect on the predicting capability of ANN model. A parsimonious ANN model
with 6 routinely monitored meteorological parameters and one temporal covariate (the category of day, i.e.
working day, legal holiday and regular weekend) as input variables was identified, where the 7 input variables
were selected following the forward selection procedure. Compared with the benchmarking ANN model with 9
meteorological and photochemical parameters as input variables, the predicting capability of the parsimonious
ANN model was acceptable. Its predicting capability was also verified in term of warming success ratio during
the pollution episodes. Finally, uncertainty and sensitivity analysis were also performed based on Monte Carlo
simulations (MCS). It was concluded that the ANN could properly predict the ambient ozone level. Maximum
temperature, atmospheric pressure, sunshine duration and maximum wind speed were identified as the pre-
dominate input variables significantly influencing the prediction of ambient ozone concentrations.

1. Introduction

Tropospheric ozone, a major air pollutant in urban areas, has ad-
verse effects on human health (Fuhrer et al., 1997; Fontes et al., 2014;

Liu et al., 2018). Most ozone in the troposphere is not directly emitted
to the atmosphere (Munir et al., 2013), but produced in the atmosphere
by the photochemical oxidation of volatile organic compounds (VOCs)
in the presence of nitrogen oxides (NOx) (Jenkin and Clemitshaw, 2000;
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García et al., 2011). Previous studies revealed that ambient ozone
concentrations were strongly connected with road-traffic and meteor-
ology in urban areas (Revlett, 1978; Lelieveld and Crutzen, 1990; Yi
and Prybutok, 1996; Baur et al., 2004; Munir et al., 2013; Zanis et al.,
2014). Vehicle emission is considered as one of the major sources of
ozone precursors, particularly in large cities (Jenkin, 2008). Solar ra-
diation has the greatest effect on the photochemical reactions gen-
erating tropospheric ozone (García et al., 2011). Consequently, it was
observed that ambient concentrations were the highest during hot and
sunny summer episodes characterized by low ventilation (a result of
low winds and low vertical mixing) (Luna et al., 2014; Zanis et al.,
2014; Biancofiore et al., 2015). On the contrary, precipitation and high
relative humidity result in low ozone concentration due to the reduc-
tion of the photochemical production efficiency and an increase of wet
deposition (Lelieveld and Crutzen, 1990; García et al., 2011). Atmo-
spheric movements of the air (i.e. winds) causes the spread of high
concentrations of pollutants (in this case the ozone and its precursors);
therefore, wind speed and direction are also highly correlated with
ambient ozone concentration (Revlett, 1978; García et al., 2011; Luna
et al., 2014; Biancofiore et al., 2015).

During the last few decades, various modeling techniques, either
mechanistic or statistical, have been applied to predict ambient ozone
concentration. Mechanistic models explicitly simulate the life cycle of
air pollutants including formation, emission, transport and dis-
appearance in numerical way (Brasseur et al., 1998; Russell and Dennis,
2000; Fusco and Logan, 2003; Schaap et al., 2008). The performance of
these mechanistic models was usually constrained by the quantity and
quality of input datasets (Han et al., 2008). Alternatively, a few of
statistical techniques such as regression or other data-driven methods
that requires less information were also commonly used. Multiple linear
regression (MLR) and artificial neural network (ANN) were the two
popular methods (Yi and Prybutok, 1996; Gardner and Dorling, 1999;
Chaloulakou et al., 2003; Wang et al., 2003; Heo and Kim, 2004; García
et al., 2011; Luna et al., 2014; Biancofiore et al., 2015; Taylan, 2018),
where the ambient ozone concentration was expressed as a function of
photochemical and/or meteorological parameters. ANNs can simulate
human learning and pattern recognition allowing the information to be
extracted from imprecise and nonlinear data sets (Hagan et al., 1996).
As they are flexible and less assumption-dependent, there is no need to
define the underlying physical process between the inputs and outputs
(García et al., 2011). In the tropospheric ozone formation, the re-
lationships between photochemical and meteorological variables in-
volved are complex and non-linear (Gardner and Dorling, 1999; Jenkin
and Clemitshaw, 2000; García et al., 2011), for this reason the ANN is
more preferred to MLR in predicting the ozone concentration (Yi and
Prybutok, 1996; Chaloulakou et al., 2003).

There have been numerous studies about the modeling of ozone
concentration using ANN models in different locations and seasons
(Biancofiore et al., 2015 and reference therein). The model architecture
or input parameters were not unique either (García et al., 2011; Luna
et al., 2014; Biancofiore et al., 2015; Taylan, 2018). The time resolution
was either day or hour; and the output variable was either daily max-
imum values or average values. The commonly used photochemical
parameters as inputs of ANN models include but not limited to NO,
NO2, total hydrocarbon (THC) and non-methane hydrocarbon (NMHC)
(Yi and Prybutok, 1996; Heo and Kim, 2004; García et al., 2011; Luna
et al., 2014). Although adding more photochemical parameters might
increase the capability of ANN in predicting the ozone level
(Biancofiore et al., 2015), the cost of obtaining such dataset is not less
than that obtaining the ozone concentration directly in practice. On the
contrary, meteorological parameters are routinely monitored in many
urban areas so that the data availability is not a problem especially in
developing countries. Based on the parsimony principle, it is tempted to
develop an ANN model to predict ozone concentration using only a few
of meteorological parameters.

ANN development is stochastic in nature, and no identical results

can be reproduced on different occasions unless carefully devised
(Elshorbagy et al., 2010). Therefore, it is necessary to analyze predic-
tion uncertainty and identify the contribution of individual sources of
uncertainty to total prediction uncertainty (Wagener and Gupta, 2005).
Generally, ANN prediction uncertainty stems from two aspects, the
uncertainty in ANN structures as well as the uncertainty in ANN inputs,
weights and biases (Chitsazan et al., 2015). The Monte Carlo Simulation
(MCS) technique is a widely used method for prediction uncertainty
analysis in ANN modeling and it allows the quantification of the model
prediction uncertainty (Shrestha et al., 2009; Kasiviswanathan et al.,
2016). In addition, MCS technique can also be used for sensitivity
analysis to determine how much ‘‘sensitive’’ is the ANN output to the
changes in the value of the input parameters (Nourani and Fard, 2012).
It is worth to note that results of uncertainty analysis and sensitivity
analysis about ANN modeling of ambient ozone level were less reported
in previous literatures.

The objective of this study is to develop a parsimonious ANN model
for ambient ozone as a function of meteorological parameters and other
temporal covariate as predictors. The dataset including ozone, NO2, and
other meteorological parameters, which was collected in Jinan (a me-
tropolis in Northern China), was used for training, validating and
testing the ANN model. The performance of the created ANN models
was analyzed using multiple statistical metrics; and the MCS technique
was applied for uncertainty and sensitivity analysis.

2. Materials and methods

2.1. Study area and datasets

In this paper, Jinan, the capital city of Shandong province in
Northern China, was selected as the study area. Jinan has a humid
continental climate with four distinctive seasons (dry and nearly rain-
less in spring, hot and rainy in summer, crisp in autumn and dry and
cold in winter). The average annual temperature is 14.70 °C, and the
annual precipitation is around slightly above 670mm. January is the
coldest and driest month, with a mean temperature of −0.4 °C and
5.7 mm of equivalent rainfall. July is the hottest and wettest month; and
the mean temperature and precipitation are 27.5 °C and 201mm, re-
spectively. Due to the mountains to the south of the city, temperature
inversions are common, occurring on about 200 days per year. The
urban population in Jinan is about 4.69 million. Like several northern
cities in China, Jinan also faces the problem of severe air pollution,
especially in winter and spring.

The air quality and meteorological data was provided by Ministry of
Environmental Protection (MEP) and Meteorological Administration
(CMA) of China, respectively. In this study, we used the meteorological
dataset collected at the only national meteorological station affiliated to
CMA (N36°36′, E117°03′) in the urban area of Jinan. The meteor-
ological dataset can be accessed from the Climate Data Center of CMA
(CDC-CMA, 2017). The original dataset at this station includes daily
observations of maximum/average/minimum temperature, maximum/
average/minimum atmospheric pressure, average/maximum wind
speed, wind direction, relative humidity and sunshine duration. At the
beginning of 2013, MEP of China gradually published the hourly air
quality data (PM2.5, PM10, NO2, SO2, O3, CO) to the public. We col-
lected the dataset of air quality at the nearest air quality monitoring site
(N36°37′, E116°59′) from the meteorological station. The time range of
air quality data was from 19 January 2013 to 31 October 2017. The air
quality data can be accessed from the data center of MEP of China (DC-
MEP, 2017). Fig. 1 shows the geographic locations of the meteor-
ological station and the air quality monitoring site. The urban area of
Jinan approximately ranges from E116°53′ to E117°12′ and N36°34′ to
N36°41’.

Previous studies reveal that ambient ozone concentration gradually
increases in the morning, because solar radiation promotes the forma-
tion of photochemical oxidants (García et al., 2011). When
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Fig. 1. Geographic locations of the meteorological and air quality monitoring stations. Circle represents the meteorological station affiliated to Meteorological
Administration (CMA) of China, while triangle represents the air quality monitoring station affiliated to Ministry of Environmental Protection (MEP) of China.

Fig. 2. Diurnal variations of ozone concentration in each month within a year. The bottom and top of the box indicate the first and third quartiles, and the band
inside the box indicates the second quartile (the median). The ends of the whiskers represent the minimum and maximum values.
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concentrations of precursors in the atmosphere are lowered, the for-
mation of ozone stops and its concentration decrease as the day pro-
gresses. Hence, ambient ozone concentrations exhibit significant
diurnal variation in urban areas (Fig. 2). From Fig. 2, the ozone pol-
lution level is more serious in the daytime. In this study, only the ozone
concentrations between 9:00 a.m. to 6:00 p.m. are used, because am-
bient ozone concentration in the daytime could properly reflect the
ambient ozone pollution level. Days with more than three missing va-
lues of hourly ozone concentrations were considered to be unavailable.
For the purpose of model development, only records with both pollu-
tion and meteorological observations were taken in to account. The
final dataset with complete meteorological and air quality data covers
1658 days in the study period.

In this study, the output of ANN model was the average ozone
concentration in daytime (9:00 a.m. - 6:00 p.m.). Not all routinely
monitored meteorological parameters were used as input parameters of
ANN model, because our objective was to develop a parsimonious ANN
model. Based on previous studies, 7 meteorological parameters in-
cluding precipitation (PRE), maximum barometric pressure (MaxPRS),
relative humidity (HUM), sunshine duration (SD), maximum tempera-
ture (MaxTemp), maximum wind speed (MaxWind), and wind direction
(WD) are selected as the potential predictors. Since vehicular source
emissions were the major source of ozone precursors, the data obtained
on the weekends and holidays need to be treated separately. Fig. 3
showed the probability distribution of daily average ozone concentra-
tion on working days, weekends, and China's legal holidays in May,
June, September and October (there was not legal holidays in July and
August). From Fig. 3, we found that ozone level was the higher on
regular weekends but the lower on working days. This surprising phe-
nomenon was mainly due to difference of road traffic on different days.
Most shopping and business centers are located in the urban areas of
Jinan; therefore, traffic jam is more serious on weekends and holidays
than that on working days resulting in more emission of some primary
pollutants in urban areas. On legal holidays, a part of private vehicles

left from the urban areas for leisure travel, traffic jam was not as serious
compared with regular weekends. On working days, public transpor-
tation was more preferred by citizens resulting in less emission of air
pollutants. To present this difference, we added a temporal covariate,
the category of day (CD), where 1, 2 and 3 represent working day, legal
holiday, and regular weekend, respectively. In addition, data of one
photochemical parameter (NO2) was also collected for the purpose of
model comparison.

2.2. Artificial neural network

Artificial neural network (ANN) model is an essentially simple
mathematical model defining a function →F X Y: , where the non-
linear relationships between variables in inputs X and variables in
output Y can be determined (Antanasijević et al., 2013). Before de-
veloping a ANN model, network topology, neuron characteristics, and
training or learning rules with inputs, output(s) and hidden layers with
interconnections should be specified (Mehrotra et al., 2000). Generally,
a 3-layer ANN (input, hidden and output) model is capable to produce
acceptable performance in predicting the ozone concertation (Yi and
Prybutok, 1996; Prybutok et al., 2000; García et al., 2011; Luna et al.,
2014; Biancofiore et al., 2015). In this study, the layer number of ANN
model was also set to be 3. Neuron is the fundamental processing unit
that computes a weighted sum of its input signals and then applies a
nonlinear activation function to produce an output signals (García
et al., 2011). Neurons can use any differentiable transfer function to
generate their output, and logarithmic sigmoid (log-sigmoid) and tan-
gent sigmoid (tan-sigmoid) are two most commonly used as hidden
transfer functions while the linear transfer function is more applied as
output transfer function (Deo and Sahin, 2015). The number of hidden
layer neurons is another ANN parameter needed to be determined, al-
though there is no rule for the optimum number of neurons in the
hidden layer (Yetilmezsoy and Demirel, 2008). ANNs are also sensitive
to the number of neurons in their hidden layers. Too few neurons can

Fig. 3. Probability distribution of daytime average of ozone concentration on working days, legal holidays, and regular weekends in May, June, September, and
October (2013–2016).
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lead to underfitting. Too many neurons can contribute to overfitting, in
which all training points are well fitted, but the fitting curve oscillates
wildly between these points. As long as training methods, 2 s-order
training methods, primarily the Levenberg–Marquardt (LM) or the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton back-
propagation learning algorithms were considered to be computationally
efficient (Marquardt, 1963; Dennis and Schnabel, 1983). In this study,
the LM algorithm was chosen as the default one due to its rapid con-
vergence (Yetilmezsoy and Demirel, 2008; Deo and Sahin, 2015).

The number of neuron in hidden layer and the transfer and output
functions of the network were usually decided by trial and error (Deo
and Sahin, 2015). By setting different neuron characteristics and
training algorithms, a few of candidate ANN models can be developed
and evaluated to select the optimum one. The ANN models were de-
veloped under MATLAB environment running under Intel 4-core i7,
3.4 GHz CPU. After training and validating the networks, the meteor-
ological parameters and covariate in the testing phase are used to
predict the ozone concentrations, and then the predictions are com-
pared with the observed values of the ozone concentrations.

2.3. Evaluation of model performance

The performance of ANN model was evaluated using four metrics
including: (1) Willmott's Index of Agreement (IA) (Willmott, 1982); (2)
Root-Mean Square Error (RMSE), (3) Mean Absolute Error (MAE), (4)
Coefficient of Determination (R2). IA represents the ratio between the
mean square error and the potential error. RMSE and MAE measure
residual errors and they are valuable to the model as they indicate the
error in the output units. R2 equals the square of the Pearson correlation
coefficient between predicted and observed values of ozone con-
centrations in linear least squares regression (Antanasijević et al.,
2014). A high R2 implies a good model performance, and vice-versa.
These four metrics are sufficient for evaluation of the ANN model's

performance and used herein for selection of the best architectures or
combination of input parameters of the networks.

Moreover, the ANN model could also be used in environmental
warning system. Therefore, the capability of ANN model in predicting
air pollution episodes is also one very important metric of model per-
formance (Noori et al., 2010). According to the China's ambient air
quality standards, threshold limit value for 8-h average of ambient
ozone concentration in urban area is 160 μg m/ 3 (MEP, 2012). In this
study, the average ozone concentration in daytime above 160 μg m/ 3 is
selected as a representative value for episodes, and the final ANN model
will be further evaluated during pollution episodes. We define warning
success ratio as:

=
> >

>
WSR count Observation Prediction

count Observation
( 160, 160)

( 160) (1)

WSR represents the warning ability in environmental warming system.

2.4. Inputs selection

In this study, the dataset consists of 9 potential input variables in-
cluding 7 meteorological parameters, one temporal covariate, and one
photochemical parameter (NO2). The objective of this study is to ex-
plore the feasibility of predicting ozone concentration using meteor-
ological observations and temporal covariate. We firstly create an ANN
model using all 9 input variables, and it will be used for benchmarking
the performance of models with different combinations of input para-
meters. The 7 meteorological parameters and one temporal covariate
are then selected using forward selection (FS) technique (Khan et al.,
2007; Noori et al., 2010; Dehghani et al., 2013). FS begins with or-
dering all potential input variables according to their correlation with
the output variable (from the most to the least correlated variable).
Then, the most correlated variable is chosen as the first input variable,
and the remaining input variables are added sequentially. In each trail,
the model performance in the testing phase is evaluated by using the
four metrics, IA, RMSE , MAE , and R2.

2.5. Uncertainty analysis and sensitivity analysis

Once the architecture, neuron characteristics, and training algo-
rithm of the optimum ANN model were determined, Monte-Carlo si-
mulations (MCS) were further conducted to examine the uncertainty of
the final ANN model in predicting daily ozone concentration. MCS in-
volves the repeated generation of random parameters from their
probability distributions, and then computing the statistics of the
output (Antanasijević et al., 2014). The first step is to determine the
probability density functions (PDFs) of the input variables (e.g. Gaus-
sian, log-normal, Weibul etc.). Kolmogorov–Smirnov test is used to
compare the probability distribution of input variables with a reference
probability distribution with a 5% significance level (Dehghani et al.,
2013; Antanasijević et al., 2014). With these fitted probability dis-
tributions, we randomly resample the input dataset without replace-
ment for 1000 times, keeping the ratios of training, validation and
testing sets unchanged. Unrealistic samples exceeding the maximum or

Table 1
Candidate ANN models with different network architecture and the model performance in the testing phase.

Model ID Hidden transfer function* Output transfer function Network structure§ IA RMSE MAE R2

M1 Tansig Linear 8‒10‒1 0.9414 23.1441 17.1356 0.8119
M2 Tansig Linear 8‒20‒1 0.9425 23.0558 17.1574 0.8163
M3 Tansig Linear 8‒30‒1 0.9439 22.2102 17.6091 0.8226
M4 Logsig Linear 8‒10‒1 0.9393 23.3738 17.3657 0.8203
M5 Logsig Linear 8‒20‒1 0.9386 23.4334 17.4500 0.8217
M6 Logsig Linear 8‒30‒1 0.9397 23.3997 17.4225 0.8210

*Tansig = tangent sigmoid, Logsig = logarithmic sigmoid.
§Number of input parameters‒number of hidden neurons‒number of output.

Table 2
Candidate ANN models with different combinations of input parameters in
forward selection procedure and the model performance in the testing phase.
The last row is the benchmarking ANN model for input selection.

Input subset IA RMSE MAE R2

MaxTemp 0.8828 30.2980 23.8120 0.6396
MaxTemp, MaxPRS 0.9057 27.9530 22.0880 0.7025
MaxTemp, MaxPRS, MaxWind 0.9090 27.9190 21.9900 0.7105
MaxTemp, MaxPRS, MaxWind, SD 0.9280 24.8600 19.3070 0.7575
MaxTemp, MaxPRS, MaxWind, SD, HUM 0.9437 22.4740 17.4830 0.7963
MaxTemp, MaxPRS, MaxWind, SD, HUM,

PRE
0.9428 22.8570 17.6980 0.8008

MaxTemp, MaxPRS, MaxWind, SD, HUM,
PRE, WD

0.9428 22.6400 17.6070 0.8050

MaxTemp, MaxPRS, MaxWind, SD, HUM,
PRE, WD, CD

0.9439 22.2102 17.6091 0.8226

MaxTemp, MaxPRS, MaxWind, SD, HUM,
PRE, WD, CD, NO2

a
0.9451 21.9290 17.5960 0.8429

a The correlation between NO2 and O3 was not ranked.
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minimum limits should be excluded (Antanasijević et al., 2014). Then,
the final ANN model generates 1000 time series of ozone concentration.
At each day, the 95% confidence intervals are determined by finding
the 2.5th and 97.5th percentiles of the constructed distribution. This

95% confidence interval provides more information than other statistics
about the range of predictions associated with the optimum ANN model
(Noori et al., 2009, 2010). The wider the interval, the smaller is the
accuracy of the forecast and vice versa. The ratio of observed values

Fig. 4. (A) Predicted and observed ozone concentrations in training, validation, and testing phases. The dashed line indicates the threshold limit value of ambient
ozone concentration in urban area (160 μg m/ 3). (B) Scatterplots of predicted vs. observed ozone concentrations in training and validation phases (9 January 2013 to
31 December 2015). Observed ozone concentration larger than 160 μg m/ 3 marked using red circles was considered as pollution episodes, while the filled circles
represent successful warning ozone pollution. WSR represents warning success ratio defined by Eq. (1). (C) Scatterplots of predicted vs. observed ozone con-
centrations in testing phase (1 January 2016 to 31 December 2016). The interpretation of circles are the same as that in (B). (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 5. (A) Predicted and observed ozone concentrations in the extended testing phase (from 1 January 2017 to 31 October 2017). (B) Scatterplots of predicted vs.
observed ozone concentrations in the extended testing phase.
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that lie within the 95% confidence interval relative to all datasets is also
calculated as the robustness metric of the final ANN model (Noori et al.,
2009, 2010).

Also with the final ANN model, the sensitivity of the ozone con-
centration to the meteorological and temporal inputs is investigated.
Sensitivity analysis is implemented for all input variables respectively
(Antanasijević et al., 2014). For each input variable, a dataset con-
sisting of 1000 samples of inputs are firstly generated, where the values
of this input variable are sampled from its fitted probability distribution
while the other input variables are set to be constant with the mean
values. Finally, the range of predicted ozone concentration is computed
to quantify the influence of each input variable on the output variable.

3. Results and discussions

3.1. Model development and input selection

First, the network architecture was determined by evaluating the
model performance in the testing phase. In this study, a few of candi-
date ANN models with different number of hidden neurons or hidden
transfer function and 7 meteorological parameters and one temporal
covariate as input variables are developed (e.g. Şahin, 2012; Deo and
Sahin, 2015). Specifically, the hidden transfer function was either “log-
sigmoid” or “tan-sigmoid”, while output transfer function was always
“linear”. The number of hidden neurons might be 10, 20, and 30, re-
spectively. This resulted in a total of 6 ANN models (Table 1). The main
dataset from 9 January 2013 to 31 December 2016 (1461 days) was
used for model development. More specifically, dataset from 9 January
2013 to 31 December 2015 was used for training (used for ANN model
training) and validation (extracted from the training dataset and used in
training process to prevent ANN overtraining and to enable better
generalization of the ANN model on new data). Other dataset in 2016
was used as the testing dataset (used to evaluate ANN model general-
ization after the training process). The optimum ANN model was se-
lected based on the values of the 4 statistical metrics (IA, RMSE , MAE,
and R2) calculated in the testing phase. Table 1 summarized the model
performance. We found that these six candidate ANN models performed
almost equally well. The training time was not too long either (less than
50 s). Consequently, the specifications of ANN mode with “tan-sigmoid”
equation as hidden transfer function and 30 hidden neurons were
adapted due to its better performance.

Next, the performances of ANN model with different combinations
of input parameters were also evaluated. The order of correlations be-
tween the output variable and the 8 input variables from highest to
lowest were MaxTemp, MaxPRS, MaxWind, SD, HUM, PRE, WD and
CD. The lowest correlation between output variable and WD or CD
could be explained by the discrete essence of WD (16 states: ⋯1,2, ,16)
and CD (3 states: 1,2,3). Therefore, the variable with the highest

correlation (i.e. MaxTemp) was selected as the first and most important
variable. Table 2 presented the prediction performance of ANN model
in testing phase with different combinations of input variables in the
forward selection procedure. The performance of the benchmarking
model with all 9 input variables was also shown in the last row of
Table 2. The combination of model input variables was also selected
based on the values of the 4 metrics. From Table 2, we found that the
input variable, WD, contributed little to improving the model perfor-
mance; therefore, WD was eliminated in the following analysis. It is
worth to note that adding CD significantly improve the model output,
although CD was not highly correlated with the model output. This
finding verified the reasonability of adding the temporal covariate (CD)
in ANN modeling of ozone. Although CD is called as temporal covariate,
it actually represents the vehicular source emissions on different cate-
gories of days as explained in previous section.

In addition, we also found that adding the only photochemical
parameter (NO2) could improve the model output. Specifically, R2

could be improved from 0.8226 to 0.8429 in the testing period. Since
our objective is to explore the feasibility of predicting ozone con-
centration solely using meteorological observations, we noted that the
model performance of ANN model with only meteorological parameters
and temporal covariate as input variables were acceptable. Thus, the
final ANN model had 6 meteorological parameters (MaxTemp, MaxPRS,
MaxWind, SD, HUM, PRE) and one time covariate (CD). The following
analyses were confined to this final ANN model in the next two sub-
sections.

3.2. Model performance

We firstly illustrated the results of ANN modeling in Fig. 4. In the
training and validation phase (9 January 2013 to 31 December 2015),
R2 was equal to 0.8701, while in the testing phase (2016), R2 became
0.8224. There was a very good agreement between the predicted and
the observed ozone concentration. In the testing phase, =IA 0.9415,

=RMSE 22.2157, =MAE 17.6010. The warning success ratios in the two
phases were 0.4955 and 0.2624, respectively. In addition, we further
extended the testing period to 2017 (from 1 January 2017 to 31 Oc-
tober 2017), and the prediction results were shown in Fig. 5. The ANN
model performed better in 2017 than in 2016. R2 became 0.8593, and
WSR became 0.7381. The prediction capability of the final ANN model
in 2017 was satisfactory.

3.3. Uncertainty analysis

Uncertainty analysis of the predicted daily ozone concentration
during the whole study period (from 19 January 2013 to 31 October
2017) has been quantified by estimating the confidence intervals of the
simulation results. The 6 meteorological parameters used in the final
ANN model were fitted to pre-assumed probability distribution func-
tions (PDFs), respectively. The other input variable, CD, followed a
discrete probability distribution. Table 3 summarized the results of
Kolmogorov–Smirnov test, and Fig. 6 presented the empirical and fitted
PDFs. Fig. 7 showed the 95% confidence intervals for the estimates of
zone concentration. In total, 81% (1341) of all 1658 observations fall
within the 95% confidence intervals. Also from Fig. 7, we found that
lower extremes were located within the 95% confidence interval, while
many higher extremes were beyond the upper bound. That means the
current ANN model has limitation to predict extreme high ozone con-
centration using the meteorological parameters and temporal covariate
as predictors.

3.4. Sensitivity analysis

The final ANN model for sensitivity analysis was trained using the
main dataset of 1461 observations. Then, 7 blocks of 1000 input vectors
were generated. In each block, one input was randomly generated

Table 3
Meteorological parameters and temporal inputs and their fitted probability
distribution function (PDF) with the input ranges and obtained O3 ranges using
the optimum ANN model (Monte Carlo sensitivity analysis).

Input Unit PDF Kolmogorov-Smirnov
test

ΔI ΔO3

Stat. Sig.(p)

1 MaxTemp °C Gaussian
mixture

0.0393 0.0372 47 165.05

2 MaxPRS hPa Lognormal 0.0081 <0.001 45 59.43
3 SD hour Weibull

mixture
0.1465 <0.001 13.3 36.33

4 MaxWind m/s GEV 0.0330 0.0126 12.2 33.69
5 HUM % Beta 0.0902 <0.001 87 22.75
6 CD – – – – 3 16.42
7 PRE mm Exponential 0.0675 0.096 127.1 15.17
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according to its continuous (or discrete) probability distribution, while
other inputs had measured mean (or mode) values. Maximum and
minimum limits on each input had been adopted to prevent unrealistic
selection of extreme values (Antanasijević et al., 2014). The input
ranges and obtained ozone ranges were presented in Table 3. From
Table 3, we found that the order of inputs’ influences on ozone con-
centration from highest to lowest were maximum temperature, max-
imum atmospheric pressure, sunshine duration, maximum wind speed,
relative humanity, temporal covariate category of day, and precipita-
tion.

Moreover, the influence of maximum temperature, atmospheric

pressure, sunshine duration and maximum wind speed were further
closely examined by splitting their ranges to smaller intervals. The
obtained ozone concentrations for each interval were shown in Fig. 8.
With the increasing of maximum temperature, the predicted ozone
concentration increased accordingly, and the output ozone concentra-
tion was more sensitive to high values of maximum temperature
(Fig. 8a). The basic reasoning is that photochemical reaction rates are
sensitive to temperature, so that increasing the temperature in the
troposphere stimulates a series of interlinked reactions that contribute
to ozone formation (García et al., 2011). Fig. 8b showed that the pre-
dicted ozone concentration decreased with the increase of the

Fig. 6. Empirical and fitted probability density functions for 6 continuous meteorological parameters. (a) Precipitation: Exponential distribution, =
−

f x e( ) μ

x
μ1 ,

=μ̂ 2.1828; (b) Maximum atmospheric pressure: Lognormal distribution, =

− −

f x e( )
xσ π

lnx μ
σ
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2

( )2

2 2 , =μ̂ 6.9035, =σ̂ 0.0091; (c) Relative humanity: Beta distribution,

= −− −f x x x( ) (1 )B a b
a b1
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1 1, ≤ ≤x0 1, B a b( , ) is the Beta function, =â 2.3787, =b̂ 1.7333; (d) Sunshine duration: Weibull mixture distribution, =
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Fig. 7. Observations of ozone concentration and the 95% confidence intervals estimated by Monte Carlo simulation with randomly sampled input vectors.

Fig. 8. Sensitivity analysis of predicted ozone concentration on 4 predominate input variables. For each input variable, 1000 samples was generated using the fitted
probability distribution functions and other input variables were assumed to be constant to predict the ozone concentration. The generated samples of the four
meteorological parameters were split to smaller intervals, and the predicted ozone concentrations for each interval were summarized as boxplots. The interpretation
of boxplots was the same as that in Fig. 1. (a) daily maximum temperature, (b) daily maximum atmospheric pressure, (c) daily sunshine duration, (d) daily maximum
wins speed.
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maximum atmospheric pressure. This phenomenon could be explained
by the seasonal variations of ozone pollution level and atmospheric
pressure. In winter, the atmospheric pressure is higher but the ozone
level is lower; while in summer the atmospheric pressure is relatively
lower but the ozone level is higher. Fig. 8c showed that a growth of the
daily sunshine duration resulted in a significant increase of predicted
ozone concentration. Solar radiation has the great effect on photo-
chemical reactions, i.e., it is involved in the formation and destruction
of the various compounds involved in the increase of tropospheric
ozone (Sun et al., 2013). In this study, we have no data of solar ra-
diation in the original meteorological dataset; instead, the daily sun-
shine duration released by CMA have been used to represent solar ra-
diation. Fig. 8d showed that a growth of the wind speed resulted in a
sharp decrease of ozone concentration, because winds are responsible
for the dispersion of air pollutants (in this case the ambient ozone and
its precursors). If wind speeds are high, the pollutants tend to disperse
quickly. The results of sensitivity analysis were consistent with the
findings revealed in some previous literatures (García et al., 2011; Luna
et al., 2014).

In Table 2, sensitivity analysis showed that relative humidity ranked
fifth and had obvious influence on ozone concentration. In Jinan, the
most humid days are mainly distributed in late July and early August.
This is also the rainy season and solar radiation is not so strong due to
cloud and aerosol in tropospheric atmosphere. The climate in most part
of China is strongly influenced by the East Asian monsoon (Gao et al.,
2016). Strong winds usually occurs in spring and autumn, northwest
and southeast are two major wind directions. Therefore, the predicted
ozone concentration was not so sensitive to wind direction. Sensitivity
analysis also revealed the difference of predicted ozone concentrations
on different types of day (Table 2). This difference was consistent with
that showed in Fig. 3. The least sensitive parameter in our ANN model
was precipitation. We noted that the real relationship between pre-
cipitation and ozone concentration was not properly reflected in our
ANN model, because the output ozone concentration was the average
value in daytime while the precipitation was the summation within
24 h.

4. Conclusions

In this study, we investigated the feasibility of using ANN model
with meteorological parameters as input variables to predict ozone
concentration in the urban area of Jinan, China. Before creating the
ANN model, the hourly ozone concentration data was statistically
analyzed. It was found that the ambient ozone concentration exhibited
significant diurnal and seasonal variations. Therefore, the average of
ozone concentration in daytime was used to represent ozone pollution
level. Moreover, we found that the probability distributions of ozone
concentration on working days, regular weekends, and holidays were
different. In this study, the category of day was also used as a potential
input variable of the ANN model.

The performance of ANN model was evaluated using four statistical
metrics in the testing period. Primarily, we found that the architecture
of network of neurons had little effect on the predicting capability of
ANN model. Then the input variables were selected using forward se-
lection procedure, and wind direction was eliminated in the final ANN
model. When the temporal covariate (CD) was added, the model per-
formance was also obviously improved, although the temporal cov-
ariate was not highly correlated with the output variable. Compared
with the benchmarking ANN model with all meteorological and pho-
tochemical parameters as input variables, the predicting capability of
the final ANN model with the 6 meteorological parameters and one
temporal covariate as input variables was acceptable. Its predicting
capability was also verified in term of warming success ratio during the
pollution episodes.

Monte-Carlo simulations were conducted to examine the un-
certainty of the final ANN model in predicting daily ozone

concentration. The uncertainty analysis showed that the ANN model
could properly predict the ozone level, while a few of the observed
extreme high values fell outside of the 95% confidence interval.
Furthermore, the Monte Carlo simulation technique was also used to
investigate the sensitivity of the output ozone concentration to the
meteorological and temporal input variables. Maximum temperature,
atmospheric pressure, sunshine duration and maximum wind speed
were identified as the predominate input variables that significantly
influence the range of predicted ozone concentration. The importance
of this study is that we have explored the feasibility of using ANN model
to predict ambient ozone concentration using a few of meteorological
parameters and as predictors. This approach is very useful especially in
developing countries where atmospheric chemistry data are sparse.
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