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Abstract
The relationship between leaf photosynthetic rate (A) in a vegetation canopy and the net ecosystem CO2 exchange (NEE) over 
an entire ecosystem is not well understood. The aim of the present study is to assess the coordinated changes in NEE derived 
with eddy covariance, A measured in leaf cuvette, and their associations in a rainfed maize field. The light response-curves 
were estimated for the carbon assimilation rate at both the leaf and ecosystem scales. NEE and A synchronically changed 
throughout the day and were greater around noon and persisted longer during rapid growth periods. The leaf A had a similar 
pattern of daytime changes in the top, middle, and bottom leaves. Only severe leaf ageing led to a significant decline in the 
maximum efficiency of photosystem II (PSII) photochemistry. The greater maximum NEE was associated with a higher 
ecosystem quantum yield. NEE was positively and significantly correlated with the leaf A averaged based on the vertical 
distribution of leaf area. The finding highlights the feasibility of assessing NEE by leaf CO2 exchange because of most of 
experimental data obtained with leaf cuvette methods; and also implies that simultaneously enhancing leaf photosynthetic 
rate, electron transport rate, net carbon assimilation at whole ecosystem might play a critical role for the enhancement of 
crop productivity.

Keywords  Eddy covariance · Leaf photosynthetic rate · Canopy · Net CO2 ecosystem exchange · Photosynthetic quantum 
yield · Photosystem II photochemistry · Upscaling

Introduction

An assessment of the consequences of climate change 
should monitor the carbon (C) cycle dynamic in an eco-
system because of its significance regarding the global car-
bon budget (Baldocchi 2003; Speckman et al. 2015; Waldo 
et al. 2016; Dold et al. 2017). Detailed information on the C 
budget of terrestrial ecosystems would improve the under-
standing of the ecosystems’ functioning and responses to cli-
matic change (Zha et al. 2004; Pielke et al. 2007; Ruiz-Vera 
et al. 2015). Carbon gas exchange has been assessed numer-
ous times using individual methods, including the eddy 
covariance technique (EC), leaf cuvette, whole plant and 
soil and ecosystem chambers individually or together with 
different components of the ecosystem (e.g., Long and Ber-
nacchi 2003; Vitale et al. 2007; Cleary et al. 2015; Kölling 
et al. 2015; Bloom et al. 2016; Anderson et al. 2017). How-
ever, the challenge may be how to corroborate ecosystem 
NEE measurement using other gas-exchange measurements 
(leaf, stem, and soil; see Moncrieff et al. 1996; Goulden 
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et al. 1996) or whole-plant chamber (e.g., Dore et al. 2003; 
Cleary et al. 2015; Malhi et al. 2017).

Measurement of CO2 fluctuations using EC is a remark-
able tool for monitoring gas and energy flux dynamics and 
has greatly contributed to our understanding of ecosystem 
carbon assimilation that occurs through photosynthesis 
and loss through respiration (e.g., Baldocchi 2003; Lasslop 
et al. 2010; Speckman et al. 2015; Vitale et al. 2016). More 
importantly, EC is a scale-appropriate method because it 
provides a relatively accurate net CO2 exchange rate over 
an entire ecosystem (Baldocchi 2003; Speckman et al. 2015) 
including those with crop species (Jans et al. 2010; Schmidt 
et al. 2012; Wagle et al. 2017). However, many studies 
have assessed the net carbon exchange of ecosystem com-
ponents using traditional tools, including the leaf cuvette 
(e.g., Field et al. 1982; Cleary et al. 2015) and whole-plant 
chamber (Denmeal et  al. 1993; Tocquin and Périlleux 
2004). The strength of the cuvette and chamber system is 
its ability to measure the diurnal variation of carbon fluxes 
and determines environmental response functions (Long 
and Bernacchi 2003; Jiang et al. 2004). However, a severe 
concern regarding measurement with a leaf chamber is the 
sampling required: a unit leaf area is chosen for measure-
ment, even though leaves are not only different according to 
their physiological activity, age and position on the plant, 
but also according to their own photosynthetic capacity gra-
dients (Tocquin and Périlleux 2004; Xu et al. 2011). Thus, 
the cuvette or chamber methods are limited in that only a 
small leaf area is considered and the environmental con-
ditions may differ inside and outside the chambers (Law 
et al. 2001; Long and Bernacchi 2003; Lake 2004; Barron-
Gafford et al. 2013). Building a bridge between the leaf- 
and ecosystem level gas-exchange processes is a key issue 
for improving a crop assimilation model’s accuracy (Lizaso 
et al. 2005; Wang et al. 2015; Kölling et al. 2015). However, 
the relationship between the two methods (EC and cuvette) 
is not well understood (Barron-Gafford et al. 2013; Wang 
et al. 2015; Zhang et al. 2015). Additionally, because there 
is a relatively low cost when using leaf cuvette compare 
to EC systems (Long and Bernacchi 2003), the data at the 
leaf level often are more available than the data found when 
using EC technology. Thus, data captured by leaf cuvette 
may be useful when scaling up carbon exchange from leaf 
to ecosystem levels.

The older leaves of maize plants have lower A, chloro-
phyll and nitrogen contents compared to young leaves, indi-
cating the obvious senescence in the older leaves (He et al. 
2002; Chen et al. 2016). There is a negative relationship 
between A and leaf longevity (Wright and Cannon 2001; 
He et al. 2002; Xu et al. 2011). Thus, leaf position reflects 
the leaf growth stages, with the older leaves often located 
on closer to the ground in a canopy profile (Xu et al. 2011; 
Acciaresi et al. 2014). Nevertheless, the examination of 

photosynthetic and photosystem function parameters, such 
as A and the maximum efficiency of PSII photochemistry 
(Fv/Fm, where Fv is variable fluorescence and Fm is the 
maximum fluorescence yield), on different leaf positions, is 
of high importance to determine their relative contributions 
to photosynthetic capacity in an ecosystem.

In a field, most of the observed daily variations in pho-
tosynthesis could be largely attributed to environmental 
changes, such as radiation and temperature (Willianms and 
Gorton 1998; Muraoka et al. 2000; Lasslop et al. 2010; Bar-
ron-Gafford et al. 2013; Locke and Ort 2015). With meas-
ured photosynthetic photon flux density (PPFD) and other 
weather variables such as water and temperature, established 
empirical models may be able to estimate NEE and upscale 
CO2 exchange from a leaf to the whole canopy (e.g., Hirose 
2005; Yuan et al. 2007; Louarn et al. 2015; Terashima et al. 
2016). Nevertheless, the changes in NEE derived from EC 
and their relationships with leaf A observed by leaf cuvette 
have received little attention. The present study used the EC 
method simultaneously combined with leaf cuvette measure-
ment. We hypothesised that the daily and seasonal change 
of NEE pattern using EC over an entire ecosystem can be 
partly represented by those of A with a gas-exchange system 
in a leaf cuvette as a proxy, which depends on the change of 
PPFD and air temperature. Our specific object was to deter-
mine whether, and if so how, CO2 exchange rate with a leaf 
cuvette can represent EC over a rainfed maize ecosystem.

Methods

Site description

The research was conducted at Jinzhou Agricultural Ecosys-
tem Research Station (41°09′N, 120°12′E, about 17 m.a.s.l.), 
Liaoning Province, in north-eastern China, which is located 
on the north-eastern maize production belt that accounts for 
39 and 43% of China’s total maize planting area and yield, 
respectively. The climate is a temperate monsoon with mild 
air temperature during the spring and autumn, cool and dry 
winters and hot and wet summers. The relevant climate vari-
ables in this experimental site are shown in Table 1. The 
field was surrounded by maize plants in all directions, and 
the entire area was flat. The rainfed maize sows and har-
vests conventionally in early May and late September, 2004. 
A composite fertilizer was applied (11.2 g N m− 2, 11.2 g 
P2O5 m− 2 and 11.2 g K2O m− 2) 3–5 days before sowing. 
The site was a clay loam and medium type, a typical brown 
soil with a pH value of 6.3 in 0–40 cm soil layer. The soil’s 
organic matter concentrations, total N, available N, available 
P2O5, and available K2O were 12, 0.69 g kg− 1, 60.0, 7.2 
and 80.4 mg kg− 1, respectively. The measurements in situ 
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showed that the row spacing was around 0.60 m with a plant 
density of 5.30 × 104 plant ha− 1.

Eddy covariance measurements

Carbon flux measurements were acquired using EC tech-
nique mounted at 3.5 m above the ground, about 1 m higher 
than the top of the maize plants. The flux system consisted of 
a three-dimensional sonic anemometer (CSAT3, Campbell 
Scientific Inc., Logan, Utah, USA) and an open-path CO2/
H2O analyser with LI-7500 software (Li-Cor Inc., Lincoln, 
Nebraska, USA) with a CR500 measurement and control 
system. All EC data were collected at a 10 Hz sampling 
frequency. Half-hour CO2 flux data were rejected if they met 
the following criteria: (1) the data were from an incomplete 
half-hour measurement, (2) they were periods during rain 
events, (3) there were relatively stable atmospheric condi-
tions (u*, friction velocity = < 0.2 m s− 1, see the threshold 
of 0.25 m s− 1 set by Verma et al. 2005) and (4) the extreme 
values were derived from either the three-dimensional wind 
velocities or the scalars (Aurela et al. 2002; Wang et al. 
2008; Li et al. 2009). Around 14–17% of the flux data were 
eliminated (Li et al. 2009). In the current study, the energy 
balance closure was considered an independent method 
to assess EC reliability (Li et al. 2009). Here, we avoided 
missing data in the measured time. Thus, interpolated val-
ues for filling gaps were not used (Wang et al. 2008). CO2 
fluxes monitored with the EC were obtained from a foot-
print upwind of the tower (covering at least 400 m2), which 
can calculate the NEE (i.e., CO2 fluxes per second per unit 
ground area) collected with EC in this area during the meas-
urement of leaf–gas exchange. The sampling area for the 
measurements of leaf area and leaf–gas exchange was also 
located within the EC tower’s footprint. We simultaneously 
measured leaf–gas exchange within 30 min to complete one 
replicate (3–6 plants) to match the 30-min mean NEE at the 
same time. We separated the three groups to analyze the 
relationships of NEE with A at the leaf three positions (top, 
middle, bottom) at the three stages (silking, milking, and 
maturing). Each point for the photosynthesis measurement 
matched the NEE point within a 30-min measurement cycle.

A weather station was installed at about 15 m from the 
CO2 flux measurement tower to record weather data. PPFD 
was measured at a height of 3.0 m above ground level with 
a Li-190SA quantum sensor (LI-COR, Inc., Lincoln, NE, 
USA). Surface temperatures were measured at 2.3 m above 
ground level (4000.4GL infrared temperature transducer, 
Everest Interscience, Inc., Tucson, USA).

Leaf net photosynthesis rate

Leaf–gas exchange measurements were made using an 
open gas-exchange system (LI-6400; LI-COR, Inc., Lin-
coln, NE, USA). The gas-exchange parameters were deter-
mined throughout the day at 1–2 h intervals under ambi-
ent conditions, and each measurement was taken within 
30 min. The leaf temperature (Tleaf) was simultaneously 
measured on the leaf adaxial surface by a thermocouple. 
The leaf net photosynthetic rates (A) were measured using 
at least three plants chosen at random in around a 30-m 
radius of the meteorological tower. Before measurement, 
the leaves were acclimated in the cuvette for at least 40 s 
and then matched, under which the open gas measurement 
system can remain almost stable and obtain the ambient 
conditions of the field, such as PPFD, Tleaf, CO2 concentra-
tion, and relative humidity (RH). Three–six leaves, that is, 
three–six replicates, were measured at each leaf position: 
top (1–2 leaves from the top of the plants), middle (ear leaf 
or the leaves above or below ear leaf) and bottom (relative 
elderly leaves). We measured every fully expanded leaf 
from each individual plant from 8:00 a.m.–11:30 a.m. on 
the three selected sunny days—which represents the three 
key plant growth stages: silking, milking, and maturing. 
The middle zone was measured in each leaf, which can 
represent the leaf’s more actively physiological processes 
(Escobar-Gutiérrez and Combe 2012), and the main leaf’s 
vein was avoided when measurement took place. We kept 
the measurement time for each plant to within 5 min to 
minimize the environmental variables such as radiation 
and temperature. Within a measurement period cycle, the 
measurement starting leaf was shifted between the top leaf 

Table 1   Climate data in the site 
(Jinzhou Meteorological Station 
at the site)

The long-term climate data are average values over the past 58 years (1951–2009) (Liang and Chen 2010)

Long-term (1951–2009) Growing season during measurement (2004)

Months May Jun Jul Aug Sep

Mean annual air temperature (°C) 9.4 Mean monthly temperature 18.2 23.1 24.4 23.7 20.0
Coldest monthly air 

temperature(°C)
− 8.2 Coldest daily air tempera-

ture
12.3 17.3 19.4 16.7 12.6

Hottest monthly air temperature 
(°C)

24.5 Hottest daily air tempera-
ture

24.0 29.8 29.1 27.9 24.2

Mean annual precipitation (mm) 564 Total monthly precipitation 33.4 194.7 214.6 131.0 47.6
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and the most bottom leaf to minimize the environmental 
variables’ effects.

Chlorophyll fluorescence

The measurements of chlorophyll fluorescence were con-
ducted using an integrated fluorescence chamber head (LI-
6400–40 leaf chamber fluorometer, LI-COR) with an open 
gas-exchange system (LI-6400F, LI-COR). The measured 
plant leaves were the same ones determined for A, after a 
30-min dark adaptation at the ambient temperature; the min-
imal fluorescence yield (Fo) was measured using modulated 
light that was sufficiently low (< 0.1 µmol m− 2 s− 1), and 
the maximal fluorescence yield (Fm) was determined with 
a 0.8 s saturating pulse at 7000 µmol m− 2 s− 1 in the dark-
adapted leaves. The fluorescence parameters were obtained 
from van Kooten and Snel (1990) formula, as follows:

where Fo and Fm are the minimal and maximal of fluo-
rescence yields, respectively; Fv is the relative variable 
fluorescence.

Estimation for photosynthetic curves of light 
response

The parameters of the response of photosynthesis to light 
intensity were estimated by the following quadratic equation 
(Prioul and Chartier 1977; Long et al. 1993):

where A is the net photosynthetic rate (µmol m− 2 s− 1), Amax 
is the maximum CO2 accumulation rate (µmol m− 2 s− 1), 
PPFD is the photosynthetic photon flux density (µmol m− 2 
s− 1), α is the leaf maximum apparent quantum yield of CO2 
uptake, θ is the convexity of the transit from light-limited 
to light-saturated photosynthesis and Rd is the respiration 
rate. The parameter bounds were constrained to ensure the 
nonlinear curve regression estimation: α < 1, θ < 1, Rd < 10, 
θ < 1, Amax < 50 (Long et al. 1993).

Here, we assumed NEEdaytime as net CO2 assimilation rate 
at ecosystem level (the positive values indicate the net CO2 
uptake by the entire ecosystem) in terms of big leaf model (de 
Pury and Farquhar 1997). Thus, the parameters of the response 
of NEEdaytime to light were estimated accordingly from the fol-
lowing equation (Prioul and Chartier 1977; Long et al. 1993; 
de Pury and Farquhar 1997):

The maximal efficiency of PSII photochemistry
(

Fv∕Fm

)

=
(

Fm − F0

)

∕Fm.

A =
(

� × PPFD + Amax −
(

(

� × PPFD + Amax

)2

−4� × PPFD × � × Amax

)0.5
)

∕(2�) − Rd,

where NEEdaytime is the net ecosystem exchange rate (µmol 
m− 2 s− 1), NEEdaytime-max is the maximum net ecosystem 
exchange rate (µmol m− 2 s− 1), eα is the ecosystem quan-
tum yield and ERd is the ecosystem respiration rate. The 
parameter bounds were constrained to ensure the nonlinear 
curve regression estimation: eα < 1, θ < 1, ERd < 10, θ < 1, 
NEEdaytime-max < 50 (Long et al. 1993).

Leaf area index (LAI)

For each plant measured for leaf–gas exchange, every leaf’s 
maximum length and width (cm) were measured. The leaf area 
was calculated using an empirical equation: leaf area = leaf 
maximum length × leaf maximum width × 0.75. Total leaf area 
per plant was summed from every leaf area of the entire plant. 
LAI was assessed using total leaf area per plant divided by 
the ground area per plant (Francis et al. 1969). Whole plant 
leaves were equally divided into three vertical layers, from soil 
surface to plant top, to examine the LAI vertical distribution. 
Only green leaves were considered when calculating LAI.

Statistical analyses

All statistical analyses were performed using SPSS 20.0 soft-
ware (SPSS Inc., Chicago, IL, USA). A two-way test on the 
effect of leaf positions (i.e., canopy layers) and measured 
time on these parameters, including leaf A, Fv/Fm, NEE and 
LAI, was conducted with a general linear model (GLM). We 
conducted nonlinear regression estimations for the response-
curves of the relationships between A at leaf scale or NEE at 
ecosystem scale with PPFD at the silking, milking, and matur-
ing growth stages, respectively. The curve estimation method 
was determined by a sequential quadratic programming with a 
default maximum iteration—the program can use the iterative 
method to find the values of the parameters that fit best until 
the minimum sum of squares is found; the relevant param-
eters were constrained to a reasonable range to prevent itera-
tive steps that could have led to an overflow issue (Gill et al. 
1984). A linear regression of NEE with leaf A and a nonlinear 
regression of Fv/Fm with the days after sowing (DAS) were 
also made. Significance is at P < 0.05, otherwise stated.

NEEdaytime = A =
(

e� ∗ PPFD + NEEdaytime-max

−
(

(

e� × PPFD + NEEdaytime-max

)2

−4 × e� × PPFD × � × NEEdaytime-max

)0.5
)

∕(2�) − ERd,
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Results

Relationship of net CO2 exchange between leaf 
and ecosystem levels

The net ecosystem CO2 exchange (NEE) was positively and 
significantly correlated with leaf A in the three leaf positions 
at the three key growth stages (P < 0.05; Fig. 1), except in 
the middle leaves at the milking stage (F = 1.60; P = 0.23, 
Fig. 1f). There were also positive and significant correlations 
between NEE and canopy A based on the leaf area vertical 
contribution at the three key stages (P < 0.05; Fig. 1d, h, l).

Leaf area index (LAI) change and it distribution

The maize LAI increased gradually from early growth stage 
and reached a peak value of 4.3 m m− 2 at the middle growth 
stage, thereafter decreasing until maturity (Fig. 2). There 
was a maximum contribution to the total LAI in the top 
layer, followed by the middle and bottom layers, except at 
the late growth stage where the middle part had the maxi-
mum value. Following ANOVA, the effect of date on total 
LAI was significant (F = 142.51, P < 0.001). A two-way 
ANOVA indicated date and layer as the two main factors, 
and their interaction all had significant effects (P < 0.001, 
see Supporting Information: Table SI1).

Leaf net photosynthetic rate

The diurnal variations in leaf net photosynthetic rates (A) of 
the top, middle and bottom leaves on the three chosen clear 
days were based on the determination in leaf cuvettes at the 
three growth stages (Fig. 3). The A peaked at 13:00 for all 
three leaf positions with a maximum value of 30.2 µmol 
m− 2 s− 1 for the top leaf at the silking stage (Fig. 3a) and 
was greater in the top compared to both the middle and bot-
tom leaves. At the milking stage (Fig. 3b), the peak val-
ues of 35.4 µmol m− 2 s− 1 occurred at 10:00 a.m. but again 
peaked at 15:00. There was a lower A in the bottom leaf 
compared to the other two positions. At the later growth 
stage (26 September, Fig. 3c), the daily change of A was at 
a relatively stable level, and there were lower values relative 
to the early and middle growth stages. In the bottom leaves, 
A was approximately zero, even a negative value appeared. 
From the two-way (position and time) or three-way ANOVA 
(position, time and date), the main factor and the interactive 
effects were all significant (P < 0.05, Fig. 3a–c and see Sup-
porting Information: Table SI2).

Net ecosystem CO2 exchange (NEE)

Similar diurnal changes in NEE pattern were observed in the 
same 3 days, but they were more like the patterns of the diur-
nal leaf A in the top leaves, especially because the maximum 
values occurred at the same times of the day (Fig. 3a–c). 
NEE was higher than A of all the three layers at silking stage 
for most of the day, and NEE was higher at 11:00–14:00 
around noon during midday at the milking stage. However, 
at the later growth stage (26 September), NEE was lower 
than the A of the top and middle leaves, but higher than those 
of the bottom leaves.

Chlorophyll fluorescence

There were quadratic curve patterns of the relationships 
between the maximum efficiency of PSII photochemistry 
(Fv/Fm) and days after sowing (DAS), particularly in the 
bottom leaves (P = 0.035) (Fig. 4). The Fv/Fm significantly 
decreased in the leaves located on the lower positions at the 
early and later stages (P < 0.05), whereas there were no sig-
nificant differences along the three leaf positions during the 
middle stages. From the two-way ANOVA, the date, position 
and their interaction have all significant effects [P < 0.01, 
Table SI3].

Relationships of A and NEE with leaf and air 
temperature

Based on a linear regression analysis, there were often sig-
nificant and positive relationships between leaf A and leaf 
temperature at the three growth stages (P < 0.05), except for 
the middle position at milking stage [see Supporting Infor-
mation: Table SI4]. Daytime NEEs were also significantly 
and positively correlated with air temperature (Ta) at the 
three key growth stages (R2 = 0.94, P < 0.001; R2 = 0.72, 
P < 0.001; R2 = 0.47, P = 0.009, respectively; Table SI4), 
showing a higher association between NEE and Ta during 
the peak growth periods.

Relationships of A and daytime NEE with PPFD

The maximum net photosynthetic rates (Amax) were the high-
est at the grain-milking stage, with the minimum being at 
the late grain-filling stage; the leaf photosynthetic quantum 
yield (α) decreased with plant and grain-filling development 
(Table 2).

It was indicated that NEE changes mainly depend on 
PPFD changes. When daytime NEE was regressed against 
PPFD (Table 2), the coefficients of determination were over 
0.6 for the three key growth stages. There was a greater 
light-saturated rate of the net ecosystem CO2 exchange 
(NEEdaytime-max) at the most rapid growing periods, with a 
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Fig. 1   Relationships of net ecosystem exchange rate (NEE, y) with 
leaf photosynthetic rate (A, x) at the leaf positions (top, a, e, i; mid-
dle, b, f, j; bottom, e, g, k; canopy values, d, h, l) at the three stages 
(Silking, a–d; milking, e–h; maturing, i–l) (n = 13). F and P are 
given, respectively. Canopy values indicate average value weighted 

by faction of leaf area index (LAI) each layer in total LAI. the nega-
tive NEE means the CO2 release from ecosystem (i.e., the respiration 
rate at ecosystem level); meanwhile negative leaf A indicates the res-
piration rate at leaf level



Acta Physiologiae Plantarum  (2018) 40:156 	

1 3

Page 7 of 14   156 

maximum value of 48.7 µmol m− 2 s− 1 at the grain-milking 
stage while the minimum value of 14.7 µmol m− 2 s− 1 was 
found at the end of the grain-filling stage. The ecosystem 
quantum yield (eα) decreased as the plant grew, with a maxi-
mum α of 0.039 at the milking stage and a minimum of 
0.013 at the end of the grain-filling stage, indicating that 
the higher ecosystem quantum yield also occurred at the 
peak-growth period. The results also showed that a greater 
NEEdaytime-max was closely associated with a higher ecosys-
tem quantum yield.

Discussion

The major aim of this research was to improve the under-
standing of the dynamics of carbon and water exchange 
between the atmosphere and biosphere using eddy covari-
ance (EC) measurements (Baldocchi 2003; Zha et al. 2004; 
Béziat et al. 2009; Barron-Gafford et al. 2013; Sulman et al. 
2016). Because EC technology can directly provide a reli-
able way to monitor net CO2 exchange of an ecosystem 
(NEE), it may be asked whether those data using a com-
mercial gas-exchange system in leaf cuvettes are still valid 
for assessing canopy carbon balance. Our results indicated 
that the maize ecosystem had a higher daytime maximum 
NEE and that NEE was closely associated with leaf pho-
tosynthetic rate (A) during the major plant growth season. 
Moreover, the present study indicated that NEE and A 

synchronously changed with daytime and decreased as the 
plant aged. In addition, decreases in the leaf and ecosystem 
photosynthetic quantum yield (α) with plant growing and 
grain-filling were also found.

The daytime maximum NEE was 4.8 µmol m− 2 s− 1 in a 
Scot pine forest (Zha et al. 2004), and it ranged between 6.0 
and 8.0 µmol m− 2 s− 1 in a serpentine grassland in California 
(Valentini et al. 1995) and a Stipa krylovii steppe in northern 
China (Wang et al. 2008); the value reached up to 19.5 µmol 
m− 2 s− 1 at the peak growth stage in a Mediterranean annual 

Fig. 2   Changes in leaf area index (LAI) of three layers in maize 
plants. All values are mean ± SE (n = 3–5). The different lowercase 
letters indicate significant differences between the three layers at the 
same stage; and the different capital letters on the bars indicate signif-
icant differences between the three growth stages (P < 0.05). Effects 
of layer and stage are significant (P < 0.05)
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Fig. 3   Diurnal changes in net ecosystem exchange rate (NEE) and 
net photosynthetic rate (A) in top, middle and bottom leaves at silk-
ing (a), milking (b), and maturing stages (c) (n = 3–6). NEE or A are 
expressed on a m2 ground or leaf area basis, respectively. F and P val-
ues are given for position (P) and time (T) effects and their interaction 
based on a two-way ANOVA
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grassland (Xu and Baldocchi 2004). However, much higher 
maximum rates of CO2 uptake (30–40 µmol m− 2 s− 1) have 
been reported from a C4 perennial grassland (Dugas et al. 
1999). The daily peak NEE of soybean crops reached up to 
34 CO2 µmol m− 2 s− 1 in a rainfed field (Verma et al. 2005); a 
peak CO2 uptake of 23–35 CO2 µmol m− 2 s− 1 also occurred 
in another soybean field (Wagle et al. 2017). A maximum 
level of ~ 45 CO2 µmol ground m− 2 s− 1 (weighted by LAI) 
was found for maize plants (Jans et al. 2010), and a report by 
Vitale et al. (2007) indicated ~ 30 CO2 µmol ground m− 2 s− 1. 
These results are comparable to the present results (Table 2; 
Fig. 3). This may highlight that maize is one of the most 
productive agricultural staples (Dold et al. 2017). Moreover, 
NEE and A, as well as other photosynthetic capacity param-
eters such as leaf and ecosystem quantum yield, always are 
at their highest during the plant growth peak stage because 

the plants need more carbon for growth, canopy develop-
ment and grain-filling (Wang et al. 2015; Zhang et al. 2015), 
which was confirmed by the current study (Table 2; Fig. 4).

Excess light, often occurring with high air tempera-
tures or water deficits, is a major environmental stress, 
consequently causing midday depression of photosynthe-
sis (Schulze et al. 1980; Muraoka et al. 2000; Locke and 
Ort 2015). Midday depression of assimilation and stoma-
tal conductance of water vapour were remarkably deeper 
in shade leaves compared with sun leaves (Muraoka et al. 
2000). It was assumed that precipitation might not have been 
a major environmental determinant of leaf and canopy CO2 
exchange at our site (Li et al. 2009). Thus, under the present 
environmental conditions, the higher air temperature and 
ample precipitation may have favoured maize plant growth 
and development. Although the light and air temperature 

Fig. 4   Relationships of 
maximum efficiency of PSII 
photochemistry (Fv/Fm, dimen-
sionless) with DAS in top, 
middle and bottom leaves. DAS, 
day after sowing; Measured on 
26 June (66 DAS), 24 July (103 
DAS), 3 August (115 DAS), 
and 28 September (169 DAS), 
respectively

y = -0.202x2 + 1.837x - 3.376
R² = 0.992; P = 0.088

y = -0.441x2 + 4.048x - 8.472  
R² = 0.983; P = 0.131

y = -0.675x2 + 6.279x - 13.81
R² = 0.999; P = 0.035
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Table 2   Comparison of parameters derived from response-curves of the relationships of net leaf/ecosystem CO2 exchange (A/NEE) with photo-
synthetic photon flux density (PPFD)

The values in the parentheses represent the standard error. Amax, the maximum net photosynthetic rate (µmol m− 2 s− 1);  NEEdaytime-max light-
saturated rate of the net ecosystem CO2 exchange (µmol m− 2 s− 1); α/eα leaf/ecosystem photosynthetic quantum yield; Rd/ERd is leaf/ecosystem 
respiration rate; θ a constant about convexity; R2 coefficient of determination. Measured at silking (23 Jul), milking (2 Aug) and maturing stages 
(26 Sep), respectively

Stages Amax α Rd θ R2

Silking 40.26 (29.91) 0.060 (0.031) 1.44 (1.68) 0.270 (1.729) 0.904
Milking 42.61 (24.19) 0.039 (0.008) 1.00 (1.19) 0.927 (0.231) 0.810
Maturing 14.70 (13.93) 0.027 (0.024) 0.41 (0.93) 0.088(0.974) 0.944

Stages NEEdaytime-max eα ERd θ R2

Silking 40.90 (16.63) 0.039 (0.015) 6.13 (4.99) 0.984 (0.112) 0.838
Milking 48.70 (24.03) 0.032 (0.038) 6.97 (12.34) 0.977 (0.809) 0.599
Maturing 11.77 (7.89) 0.013 (0.008) 3.76 (1.02) 0.863 (0.558) 0.883
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were relatively higher in the middle of the day, the midday 
depression of photosynthesis was not observed, suggesting 
that the effects of a higher air temperature and light intensity 
combined with moderate soil water content did not constrain 
leaf and ecosystem carbon assimilation. In this region, PPFD 
may be a crucial factor in controlling CO2 flux in the canopy 
when no drought occurs (also see Zhang et al. 2015) because 
it cannot reach the optimum level for photosynthesis in most 
plant growth periods.

Pattey et al. (1991) reported that the upper and middle 
parts of the maize canopy similarly contributed 38–44% of 
canopy assimilation rate around noon, whereas the lower 
part only contributed its 16%. Our results indicated the top 
and middle leaves had an almost similar leaf A but a reduc-
tion in the bottom leaves was observed around noon, which 
may link to decreased leaf photosynthetic activity such as 
PSII photochemistry efficiency (Fv/Fm) and accelerated leaf 
senescence in the bottom leaves. In addition, plant leaves in 
the canopy are largely different in terms of their ages, posi-
tions and nutrition status, consequently leading to their own 
photosynthetic potential gradients (Stirling et al. 1994; Toc-
quin and Périlleux 2004; Chen et al. 2016; Song et al. 2018), 
especially in direct solar radiation on a sunny day (Urban 
et al. 2007). Chen et al. (2016) reported that maize leaf A, 
stomatal conductance, and nitrogen content were higher 
in the upper leaves. Furthermore, leaf chlorophyll content 
and the chlorophyll/carotenoid ratio, as well as photosyn-
thetic potentials, decrease as a leaf senesces, particularly at 
the very late stages of plant development (He et al. 2002; 
Acciaresi et al. 2014). In the present experiment, the Fv/Fm 
was greater in the top and middle leaves than in the bot-
tom leaves, indicating a significant decline with severe leaf 
ageing. It also indicates that plant photosynthetic gradients 
can occur in a maize canopy’s profile because the leaf’ ages 
and the senescence severity differ with the plant’s vertical 
profiles (Xu et al. 2011; Chen et al. 2016).

How to properly assess the photosynthesis for both a leaf 
and canopy is a key issue when it comes to carbon balance 
(Stirling et al. 1994; Hollinger et al. 2005; Long et al. 2006; 
Kim et al. 2006; Barron-Gafford et al. 2013; Ma et al. 2017a, 
b). Currently, there are available tools such as EC to track 
changes in the canopy’s photochemical activity in a field 
and to assess complex patterns of photosynthesis within and 
beyond the canopy (Chen et al. 2016; Pinto et al. 2016). EC 
technology serves as a scale-appropriate method because it 
provides ecosystem scientists with a method to assess and 
compare gas and energy exchange over a whole ecosystem 
(Baldocchi 2003; Rambal et al. 2004; Li et al. 2009; Lass-
lop et al. 2010). A main concern about leaf cuvettes is the 
sampling they require: a unit leaf area is chosen arbitrarily 
for measurement, even though leaves are not only differ-
ent according to their ages and positions on the plants, but 
also because they have their own photosynthetic capacity 

gradients (Tocquin and Périlleux 2004). For instance, a 
decrease in A at leaf-level because of photosynthetic accli-
mation under elevated CO2 may not lead to any appreciable 
decline in photosynthetic capacity at the canopy, indicat-
ing the heterogeneity of the two scales under the predicted 
climatic change (Bagley et al. 2015). The different perfor-
mances for CO2 flux change were found at both leaf and eco-
system scales in different vegetation types (Barron-Gafford 
et al. 2013). However, in the present study, we found that 
NEE using EC technology was very closely associated with 
A with leaf cuvette, particularly at the top leaf position, sug-
gesting a measurement with a small leaf chamber may still 
be more useful and feasible for assessing carbon balance 
and cycle in an ecosystem. It also indicated that the rela-
tionship of NEE by EC with PPFD is comparable to that of 
A in leaf cuvettes with PPFD in a maize field in southern 
Italy (Vitale et al. 2007). Liu et al. (2016) reported the close 
associations of the canopy CO2 assimilation rate in a canopy 
chamber with the leaf A with a leaf cuvette in a wheat field. 
A consistent functional relationship across leaf–canopy–eco-
system scales in the photosynthetic responses to ambient 
temperatures has been confirmed by a long-term study in 
an oak–grass savanna (Ma et al. 2017a, b). This point is 
important for upscaling carbon fixation from a leaf to an 
ecosystem (Pielke et al. 2007; Cleary et al. 2015; Kölling 
et al. 2015), which may validate most of the data of the 
leaf–gas exchange measured in leaf cuvettes. A close rela-
tionship between leaf cuvette and chamber CO2 assimilation 
rates were found only at the rapid growth stage in a sage-
brush steppe ecosystem (Cleary et al. 2015). However, our 
results indicated the positive and tight correlations between 
NEE and A at the three stages—silking, milking, and matur-
ing, although the values greatly differ at the different stages 
(Fig. 1). Nevertheless, whether and how leaf A at leaf level 
can precisely represent NEE at biosphere level at different 
plant growth stages and/or during entire period still need to 
be explored (Cleary et al. 2015; Chen et al. 2016). Neverthe-
less, the current finding indicated that the CO2 exchange at 
a leaf level is analogous to field scale CO2 flux in a single-
crop planting agricultural system at different stages, again 
highlighting there is a close relationship between leaf and 
ecosystem scales.

Carbon exchanges for leaves and ecosystems are crucial 
processes and important components in carbon balance and 
cycle (Stirling et al. 1994; Long et al. 2006; Barron-Gafford 
et al. 2013). The present findings concerning the close rela-
tionship of the carbon fluxes between the leaf and ecosystem 
scales during major plant growth could provide a credible 
insight into how to feasibly and accurately assess the carbon 
dynamics and cycles between leaf, canopy, and ecosystem 
scales. However, other components of the gas exchanges, 
such as plant stem and soil respiration, which are also impor-
tant carbon exchange processes for assessing carbon cycle 
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and budget (Goulden et al. 1996; Han et al. 2007; Cleary 
et al. 2015; Martínez-García et al. 2017; Malhi et al. 2017), 
were not considered in the current study.

Indeed, CO2 exchange processes such as photosynthesis 
may not accurately predict plant dry matter accumulation 
yield. The relationships between photosynthesis and crop 
yield have been reported widely (e.g., Buttery et al. 1981; 
Gifford and Evans 1981; Zelitch 1982; Fischer et al. 1998a, 
b). However, the results are still not consistent: there are the 
positive, neutral, even negative relationships, depending on 
species/cultivars, growth stages, and environmental condi-
tions (Buttery et al. 1981; Gifford and Evans 1981; Ashraf 
and Harris 2013; Yamori et al. 2016). Under environmental 
stresses like drought, the different relationships of growth or 
yield with photosynthetic performs were also found (Ashraf 
and Harris 2013): the positive in wheat (e.g., Fischer et al. 
1998a, b) and maize (Ashraf et al. 2007), the neutral in 
wheat (Hura et al. 2006), and the negative in cotton (Levi 
et al. 2009). As reported, for instance, high photosynthetic 
rate did not lead to increases in both plant biomass and yield 
due to the sink limitation and the unmatched changes in the 
regulatory networks of metabolism determining metabolite 
levels to contribute to the regulation of biomass production 
(Sulpice et al. 2009; Rossi et al. 2015; de Oliveira Silva et al. 
2018). Thus, enhancing photosynthetic capacity should be 
with synchronous improvement of the regulatory networks 
of metabolism related to biomass production.

In the present study, we found the positive correlations 
between NEE at ecosystem and leaf A throughout the day 
during rapid plant growth periods (Fig. 1). The NEE may 
indicate the net carbon accumulation rate at ecosystem in 
maize field, which may closely link to plant growth. Thus, 
the results may imply that the approaches for the enhanced A 
at leaf level may also promote NEE, and thus plant biomass 
(Long et al. 2006; Zhu et al. 2010; de Oliveira Silva et al. 
2018). Moreover, the biotechnological approaches can be 
implemented to improve both photosynthesis and growth. 
For instance, the overexpression of the enzymes targeted to 
chloroplast development such as the cyanobacterial fruc-
tose-1,6-/sedoheptulose-1, 7-bisphosphatase can markedly 
increase the initial activity Rubisco, and hence enhancing 
both photosynthesis and growth (Miyagawa et al. 2001). 
The overexpression of the RieskeFeS protein for increas-
ing electron transport rate also led to increases in Arabi-
dopsis plant biomass and seeds (Simkin et al. 2018). The 
overexpression of C4-cycle enzymes in transgenic C3 plant 
may improve C3-photosynthesis and growth (Häusler et al. 
2002); and the inhibited photorespiration via transferring of 
the E. coli glycolate catabolic pathway to chloroplasts has 
increased A. thaliana both photosynthesis and plant biomass 
(Kebeish et al. 2007; Peterhansel et al. 2013). It has been 
expected that introducing the CO2 concentrating mecha-
nism (CCM) from cyanobacteria would increase crop yield 

(Lin et al. 2014). These transplastomic tobacco lines with 
the improved photosynthetic metabolism has been obtained 
thought knocking out the native tobacco gene encoding the 
large subunit of Rubisco by inserting the large and small 
subunit genes of the Se7942 enzyme from the cyanobacte-
rium Synechococcus elongatus PCC7942 (Lin et al. 2014). 
As anticipated, the synthetic CCMs in plant to markedly 
enhance both photosynthesis and growth may be established 
with artificial protein organelles such as the engineered 
encapsulin-based CO2-fixing organelles (Giessen and Sil-
ver 2017). Plant installed a complete cyanobacterial CCM 
with the low ATP cost of the cyanobacterial CCM and high 
enzymatic capacity per unit could bring a greater advantage 
under environmental presses such as climatic change (Yin 
and Struik 2017). Actually, the high plant biomass can be 
obtained by increasing photosynthetic assimilation and less-
ening respiratory losses over the growing season (Long et al. 
2006; Reynolds et al. 2011; De Souza et al. 2017). Addition-
ally, with genomic analyses, the identification of candidate 
genes regulating photosynthesis, primary metabolism and 
plant growth would provide new avenues for crop improve-
ment (de Oliveira Silva et al. 2018). In terms of eco-physi-
ological processes, balancing leaf A and stomatal behaviour 
to elevate water use efficiency (Xu and Zhou 2008; Xu et al. 
2016) and shrinking the rapid decline in the photosynthetic 
capacity due to leaf senescence during grain-filling might 
be also useful to obtain higher yield (Dong et al. 1997; Xu 
et al. 2008, 2011; Song et al. 2018). Meanwhile optimiz-
ing canopy architecture in field to increase its light/nitrogen 
use efficiency would be helpful to increase plant produc-
tion (Long et al. 2006; Zhang et al. 2015; Yuan et al. 2007; 
Hikosaka et al. 2016). Finally, the relationship of source and 
sink could be well regulated to improve harvest index and 
grain yield (Seebauer et al. 2010; Yang and Zhang 2010). 
In the present results, there were parallel increases in leaf 
Asat, Fv/Fm, and NEE at peak growth stage (Table 2; Figs. 3, 
4), implicated that simultaneously enhancing leaf photosyn-
thetic rate, electron transport rate, net carbon assimilation 
at whole ecosystem may be an important avenue to improve 
crop productivity. A roadmap for the improvement of rela-
tionship between photosynthesis and crop production at mul-
tiple scales is proposed in Fig. 5.

Conclusion

EC technology can directly provide a reliable way to test 
whether those data from leaf cuvettes are still valid for 
assessing canopy carbon balance. The present results indi-
cated that NEE and A synchronically changed through-
out the day during rapid plant growth periods. The leaf 
A performed similar daytime change patterns in the top, 
middle and bottom leaves. A significant decline in the 
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maximum photochemistry efficiency of PSII was found 
as leaf severely ageing. A tight association was observed 
between the greater maximum NEE and ecosystem quan-
tum yield. Further, we found that NEE was positively and 
significantly correlated with the leaf A averaged based on 
the leaf area vertical distribution patterns. Our results may 
provide better understanding of the behaviours of carbon 
exchanges between the atmosphere and biosphere at dif-
ferent scale levels using both leaf cuvette and EC measure-
ments. Nevertheless, in these major terrestrial ecosystems, 
how to properly assess and integrate various carbon bal-
ance components at different scales in the field needs to 
be addressed further; this should be done based on more 
appropriate and integrative measurement technologies 
and more feasible modelling methods (Bloom et al. 2016; 

Chen et al. 2016; Malhi et al. 2017). It also implicated 
that simultaneously enhancing leaf photosynthetic rate, 
electron transport rate, net carbon assimilation at whole 
ecosystem level may be important to increase crop produc-
tivity, which needs further study.
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Fig. 5   A diagrammatic representation of the improvement of relation-
ship between photosynthesis and crop production at multiple scales. 
Note: at molecular level, the photosynthesis could be improved by the 
overexpression of the proteins targeted to photosynthetic processes 
and its organelles (1, Miyagawa et al. 2001; Simkin et al. 2018), by 
introducing the CO2 concentrating mechanism (CCM) (2, Lin et  al. 
2014), by knockdown of photorespiration via transferring the E. coli 
glycolate catabolic pathway (3, Kebeish et al. 2007; Peterhansel et al. 
2013), and by identification of candidate genes regulating photosyn-
thesis and the relevant metabolisms (4, de Oliveira Silva et al. 2018). 
At leaf level, the photosynthesis-improved paths might be to shrink 
rapid decline in photosynthetic capacity due to leaf senescence (5, 

Dong et al. 1997; Xu et al. 2008, 2011; Song et al. 2018), to balance 
leaf A and stomatal behavior to elevate water use efficiency (WUE) 
(6, Xu and Zhou 2008; Xu et al. 2016). At canopy level, optimizing 
canopy architecture in field to increase its light/nitrogen use effi-
ciency is helpful (7, Long et al. 2006; Zhang et al. 2015; Yuan et al. 
2007; Hikosaka et  al. 2016). Relationship of source and sink could 
be well regulated to promote harvest index and grain yield (8, See-
bauer et  al. 2010; Yang and Zhang 2010). The parallel increases in 
both net leaf photosynthetic rate (A) and net ecosystem CO2 exchange 
rate (NEE) are also suggested to improve crop production (9, Table 2; 
Figs. 3, 4)
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