Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary

Zhen Zhao, Jianhui Tang, Lijie Mi, Chongguo Tian, Guangcai Zhong, Gan Zhang, Shaorui Wang, Qilu Li, Ralf Ebinghaus, Zhiyong Xie, Hongwen Sun

MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China

Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Max-Planck-Strasse 1, Geesthacht, 21502, Germany

State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China

Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China

HIGHLIGHTS

• PFASs were investigated in the low atmosphere and surface water in northern Chinese seas.
• 8:2 FTOH and PFOA were the predominant compounds in the air and water, respectively.
• Distribution of PFASs was influenced by sources, geographical condition, and ocean currents.
• High levels of PFOA were found in the Laizhou Bay, Bohai Sea.
• Degradation of atmospheric neutral PFASs contributes minimal to ionic PFASs in surface water.

ABSTRACT

Perfluoroalkyl and perfluorooalkyl substances (PFASs), in the forms of neutral perfluoroalkyl substances in the gas phase of air and ionic perfluorooalkyl substances in the dissolved phase of surface water, were investigated during a sampling campaign in the Bohai Sea, Yellow Sea, and Yangtze River estuary in May 2012. In the gas phase, the concentrations of neutral \sum PFASs were within the range of 76–551 pg/m3. Higher concentrations were observed in the South Yellow Sea. 8:2 perfluorotelomer alcohol (FTOH) was the predominant compound as it accounted for 92%–95% of neutral \sum PFASs in all air samples. Air mass backward trajectory analysis indicated that neutral \sum PFASs came mainly from the coast of the Yellow Sea, including the Shandong, Jiangsu, and Zhejiang provinces of China, and the coastal region of South Korea. The fluxes of gas phase dry deposition were simulated for neutral PFASs, and neutral \sum PFASs fluxes varied from 0.37 to 2.3 pg/m2/s. In the dissolved phase of the surface water, concentrations of ionic \sum PFASs ranged from 1.6 to 118 ng/L, with the Bohai Sea exhibiting higher concentrations than both the Yellow Sea and the Yangtze River estuary. Perfluorooctanoic acid (PFOA) was the predominant compound accounting for 51%–90% of the ionic \sum PFAS concentrations. Releases from industrial and domestic activities as well as the semiclosed geographical conditions increased the level of ionic \sum PFASs in the Bohai Sea. The spatial distributions of perfluorooalkyl carboxylic acids (PFCAs) and perfluorooalkane sulfonic acids (PFSAs) were influenced by sources, geographical condition, and ocean currents.
1. Introduction

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been widely used for >60 years because of their lipophobic and hydrophilic characteristics (Kissa, 2001; Lindstrom et al., 2011). PFASs have been found in various environmental compartments worldwide (Houde et al., 2011; Z. Wang et al., 2015; Yamashita et al., 2005). Some long-chained PFASs (C ≥ 8) are bioaccumulative and toxic, and are thus listed in the national and international regulations (OECD, 2002). After perfluorooctanesulfonic acid (PFOS) and its related compounds were added to the Stockholm Convention’s Annex B, their production and use significantly decreased (Lim et al., 2011; UNEP, 2009). Major global manufacturers of perfluorooctanoic acid (PFOA) and its precursors were promised to voluntarily stop their production in 2015 (USEPA, 2006). PFASs and then reach the earth’s surface through dry/wet deposition, degradation by radicals and oxides, neutral PFASs in the air transform to ionic pollutants. Ionic PFASs are resistant to photolysis, pyrolysis, and biotransformation, thus making them highly persistent in the environment (Kissa, 2001). They have high water solubility because of their carboxylic or sulfonic acid groups, and can be transported across long distances via water (Ahrens, 2011; Yamashita et al., 2005). Open sea water is presumed an important sink of ionic PFASs homologues (Armitage et al., 2009; Yamashita et al., 2005). Neutral PFASs, such as fluorotelomer alcohols (FTOHs), are volatile and are distributed mainly in air rather than in the water phase (Ahrens et al., 2011; Dreyer et al., 2009). Following oxidation by radicals and oxides, neutral PFASs in the air transform to ionic PFASs and then reach the earth’s surface through dry/wet deposition, which are considered as indirect sources (Armitage et al., 2009; Butt et al., 2010; Ellis et al., 2004). Compared to the indirect sources, the direct sources are confirmed as the main contributors of PFASs worldwide (Armitage et al., 2009).

Several studies have reported on the PFAS-derived pollutions, especially PFOA and PFOS, along the Chinese coastline (Cai et al., 2012b; So et al., 2004; Wang et al., 2011). The composition of ionic PFASs in surface water was significantly different geographically. In the Pearl River estuary and South China Sea, PFOS was usually observed at higher concentrations as compared to other homologues (Kwo et al., 2015), whereas for the rest of the Chinese coast and seas, PFOA was the predominant pollutant (Wang et al., 2012; T. Wang et al., 2015). The industrial production and use of PFASs resulted in high level detections in some hotspots. For example, the rivers upstream to the Liaodong (Fuxin City) (Bao et al., 2010) and Laizhou (Weifang City) Bays (Heydebreck et al., 2015), of which the direct release of ionic PFASs was suggested as the major source. The previous studies were mostly concentrated in the riverine and coastal region, and little is known in the open sea area.

The Chinese Bohai and Yellow Seas have a combined total area of over 470,000 km². Hundreds of rivers in China as well as in the Korean Peninsula discharge industrial and domestic wastewater into this region (Jin et al., 2015; Kim, 2012; P. Wang et al., 2014). In the semiclosed Bohai Sea, high concentrations of PFOA and PFOS were detected in the rivers emptying into the sea, which may have elevated the levels of PFOA and PFOS in the seawater (Sun et al., 2011; P. Wang et al., 2014). There are several important industrial provinces, such as Liaoning (where Fuxin City is located), Shandong (where Weifang City is located), Zhejiang, and Jiangsu Provinces along the Bohai Sea and Yellow Sea coasts. Among the industries present along these coasts, the fluorochemical industries are deemed the most important sources of PFASs. Moreover, rapid economic development along the Bohai and Yellow Sea coasts resulted in a large amount of domestic sewage release to the marine environment (S.W. Xie et al., 2013). Gao et al. (2014) investigated PFASs in marine sediments in the Bohai, Yellow, and East China Seas, and observed a general decreasing trend from the coast to the open sea. Thus far, there has been a lack of studies focusing on PFAS pollution in the air and water covering the Bohai Sea, Yellow Sea, and Yangtze River estuary. Such studies can predict the fates of PFASs in this prominent region.

The present study revealed the pollution characteristics of PFASs in the lower atmospheres and surface waters of the Bohai Sea, Yellow Sea, and Yangtze River estuary. The aims of this study are 1) to characterize the distribution of PFASs in a large scale of Chinese marginal seas; 2) to discriminate the importance of direct (riverine discharge) and indirect sources (atmospheric degradation) on the PFASs in the open seas. The large geographical scale of this study was beneficial in comprehensively elaborating the sources and transport processes of such pollutants.

2. Material and methods

2.1. Standards and reagents

Twenty-nine neutral and ionic PFASs were analyzed, specifically 6:2, 8:2, 10:2, and 12:2 FTOHs; 6:2 and 8:2 fluorotelomer acrylates (FTACs); N-methyl perfluorobutane sulfonamide (MeFBSA); N-methyl perfluorooctane sulfonamide (MeFOSA); N-ethyl perfluorooctane sulfonamide (EtFOSA); N-methyl perfluorobutane sulfonamidoethanol (MeFBSAE); N-methyl perfluorooctane sulfonamidoethanol (MeFOSAE); and N-ethyl perfluorooctane sulfonamidoethanol (EtFOSAE) were measured in the air samples and C4–C6, C8, and C10 perfluorooctane sulfonic acids (PFASs); C4–C14 perfluoralkyl carboxylic acids (PFCAs); and perfluorooctanesulfonamide (FOSA) were measured in the surface water samples.

Sixteen mass-labeled analytes were used as the Internal Standards (IS) including 2H-labeled perfluorooctane sulfonamides (FASAs), perfluorooctane sulfonamidoethanols (FASES), and 13C-labeled FTOHs for the air samples (IS 1) and 13C-labeled ionic FFCAs and FOSAs and 18O-labeled perfluorohexanesulfonate (PFHxS) for the water samples (IS 2) (Table S1). For the air samples, 9:1 FTOH was employed as the injection standard (INJS) I and 2H-perfluoro-[1-13C2]-2-decenonic acid (8:2 FTOCA) was employed as the INJS II for the water samples. FTACs and 9:1 FTOH were purchased from Fluorochem Ltd. (Derbyshire, United Kingdom). The other standards were purchased from Welllington Laboratory Inc. (Ontario, Canada). Table S1 lists the information about the target compounds and standards in detail. Methanol, acetone, dichloromethane (DCM), and n-hexane were all residue grade and purchased from Merck (Darmstadt, Germany). Ammonium hydroxide (NH4OH) (25%) was also purchased from Merck (Darmstadt, Germany). Ultrapure Millipore water was produced by a Milli-Q® Plus 185 system (Zug, Germany).

2.2. Sample collection

Air and surface water samples were collected from May 2–20, 2012 from the research vessel Dongfuhong-2. The sampling area covered the Bohai Sea, Yellow Sea, and the Yangtze River estuary in China (Fig.
Fifteen air samples were taken using a high-volume air sampler, which was placed in the front of the ship's upper deck. Each sample was collected as a 24-hour nonstop air mass with a mean flow rate of 18 ± 3.2 m³/h and a mean volume of 429 ± 79 m³. Detailed information can be found elsewhere (Ahrens et al., 2011; Cai et al., 2012a; Labadie and Chevreuil, 2011; Zhou et al., 2013). The WAX cartridges were preconditioned with 10 mL of methanol prior to water loading. The sample-loaded cartridges were connected and analyzed separately as real samples. Prior to the instrumental analysis, the blanks of air samples were prepared.

Using a stainless steel basket, 72 surface water samples (depth: 0–30 cm) were collected from 67 sampling sites, including 5 duplicated samples at station W9, W14, W27, and W50 (two duplicated samples at W50), and stored in 1-L polypropylene (PP) bottles which were cleaned with 0.1 N HCl and a self-drying filter (GFF, Ø47 mm, pore size: 1.2 μm) was used for filtration. The dissolved phase was concentrated down to 1 to 2 mL using DCM for 16 h after being spiked with 2.5 ng (50 pg/μL, 20 μL) IS II and then solid-phase-extracted (SPE) onboard using Oasis WAX cartridges (Waters, 150 mg, 6 cm³, 30 μm) was used for solid-phase-extracted. The dissolved phase was concentrated down to 1 to 2 mL using DCM for 16 h after being spiked with 2.5 ng (50 pg/μL, 20 μL) IS II and then solid-phase-extracted (SPE) onboard using Oasis WAX cartridges (Waters, 150 mg, 6 cm³, 30 μm) at a speed of 2 drops per second via gravity. Three breakthrough cartridges were conducted at stations W1, W30, and W67. The filters were baked at 450 °C for 4 h before use, and the cartridges were preconditioned with 10 mL of methanol prior to water loading. The sample-loaded filters and cartridges were stored at −20 °C before further treatment in a clean lab. Six field blank and eight laboratory blank samples were prepared for the water analysis.

2.3. Extraction

Sample extractions were performed in a clean lab (Class 10000) with Teflon-free materials. The air columns were Soxhlet extracted by DCM for 16 h after being spiked with 2.5 ng (50 pg/μL, 50 μL) IS I. The extracts were rotary evaporated to 1 to 2 mL using n-hexane as the keepers. Following the removal of the residual water by passing the extract through 3 g of prebaked Na2SO4, the extracts were concentrated down to 150 μL under a gentle nitrogen flow (>99.999%). Prior to the instrumental analysis, the concentrated extracts were spiked with 1 ng (50 pg/μL, 20 μL) IS I and then solid-phase-extracted (SPE) onboard using Oasis WAX cartridges (Waters, 150 mg, 6 cm³, 30 μm) at a speed of 2 drops per second via gravity. Three breakthrough cartridges were conducted at stations W1, W30, and W67. The filters were baked at 450 °C for 4 h before use, and the cartridges were preconditioned with 10 mL of methanol prior to water loading. The sample-loaded filters and cartridges were stored at −20 °C before further treatment in a clean lab. Six field blank and eight laboratory blank samples were prepared for the water analysis.

2.4. Instrumental analysis

For the neutral PFASs in the air samples, quantification was performed by gas chromatography (6890, Agilent Technologies, Waldbronn, Germany)/mass spectrometry (Agilent Technologies) (GC/MS) coupled to an API 3000 triple-quadrupole mass spectrometer (Applied Biosystems/MD Sciex). The characteristic ions for GC/MS and precursor/product ions for HPLCMS/MS are listed in Table S1. The range of the calibration curve for GC/MS was 0, 5.0, 12.5, 25, 50, 125, and 250 pg/μL. The main calibration range was 0, 0.5, 1.0, 5.0, 10, and 20 pg/μL for HPLCMS/MS. In some samples, where the concentrations were out of the curve, the range changed to 0, 10, 20, 50, 100, and 200 pg/μL. More details on the instrumental analyses can be found elsewhere (Ahrens et al., 2009).

2.5. Quality assurance and quality control

The instrumental detection limit (IDL) was defined using a signal-to-noise ratio of 3. The method quantification limit (MQL) was determined using a signal-to-noise ratio of 10 for the analytes not detected in the blank samples. For the analytes detected in the blank samples, the MQLs were extrapolated under 98% confidence intervals of the concentrations in the blank samples and their standard deviations. No compounds were found in air blank samples. Only PFBA was found in the blank water samples, which had an average concentration of 33 pg/L and a standard variation of 9.6 pg/L. The IDLs and MQLs for the individual compounds are presented in Table S4. For the air samples, breakthrough columns were connected and analyzed separately as real samples. No compounds were found in the breakthrough samples. For the water samples, the breakthroughs of the cartridges were also tested, and no cartridge was found to be overloaded. PFAS concentrations in the duplicated samples exhibited a deviation within ±25%. The performances of the instruments were stable throughout the entire injection procedures. Recoveries for the individual ISs are listed in Table S5. The average recoveries ranged from 38% ± 10% for 13C8-FOSA to 119% ± 36% for 13C8-PFBA. The concentrations were all corrected by the corresponding recoveries.

2.6. Air mass backward trajectories

Using NOAA’s HYPLIT model (with 50 m as the arrival height (http://www.arl.noaa.gov/HYSPLIT_info.php)), a 120-h backward trajectory analysis for the air masses was modeled. The air mass backward trajectories for individual air samples are presented in Fig. S2.

2.7. Gas phase dry deposition velocity

The dry deposition velocity (vd) was estimated by a series of resistances to vertical transfer and surface uptake (Ma et al., 2003; Ma and Daggupaty, 2000) as follows:

\[v_d = \frac{1}{R_a + R_b + R_i} \]

\[R_a, R_b, \text{ and } R_i \text{ represent the bulk aerodynamic, quasi-laminar sublayer, and surface resistances, respectively. The aerodynamic resistance was estimated as follows:} \]

\[R_a = \frac{\ln \left(\frac{z_0}{L} \right)}{\kappa \left(\frac{u_*}{L} \right)^{1/2}} \]

\[\psi_c = \frac{c_z^2}{L} \left[1 - \phi_c(x) \right] dx / x \]

where \(z_0 \) and L are the roughness length and Monin-Obukhov length, respectively. The non-dimensional concentration gradient is presented.
as follows:

\[
\varphi_c^2 = \left(1 - 14 \frac{Z}{L}\right)^{-1/2} \text{ for } z/L < 0
\]

\[
\varphi_c = 1 + B Z^2 \text{ for } z/L > 0
\]

\[
\langle u^2 \rangle^{1/2} = \frac{\sigma_{ul}}{\ln \left(\frac{L}{z_0}\right)} - \psi_m
\]

\[
\psi_m = \int_{z_0}^{Z} [1 - \varphi_c(x)] dx / x
\]

\[
\varphi_m^2 = \left(1 - 16 \frac{Z}{L}\right)^{-1/4} \text{ for } z/L < 0
\]

\[
\varphi_m = 1 + 5.3 Z^2 \text{ for } z/L > 0
\]

The effective \(R_s \) is defined as follows:

\[
R_s = \frac{2}{\kappa (u^2)^{1/2}} \left(\frac{Sc}{Pr}\right)^{2/3}
\]

where \(Pr \) is the turbulent Prandtl number (\(Pr = 0.71 \)), and \(Sc \) is the Schmidt number (\(Sc = 3000 \)).

The surface resistance \((R_s) \) depends primarily on the nature of the surface and the characteristics of the depositing gas. \(R_s \) was estimated by the two-fluid model as follows:

\[
1 = \frac{RT}{R_s} \times \frac{1}{u_g} + \frac{1}{u_w}
\]

where \(R \) is the gas constant (8.3 Pa m^3/mol K), \(T(K) \) is the absolute temperature, and \(H(Pa m^3/mol) \) is the Henry's law constant. \(u_g \) and \(u_w \) are water-side and air-side mass transfer coefficients, respectively, and are defined as follows:

\[
k_g = 10^{-3} + 46.2 \times 10^{-3} U^2 Sc(a)^{-0.67}
\]

\[
k_w = 10^{-6} + 144 \times 10^{-4}(U^2) Sc(w)^{-0.5} U < 0.3 m/s
\]

\[
k_w = 10^{-6} + 34.1 \times 10^{-4} U^2 Sc(w)^{-0.5} U > 0.3 m/s
\]

\[
U^* = \left(0.61 + 0.063 U_{10} / 10^{-3}\right)^{0.5} U_{10}
\]

where \(Sc(a) \) and \(Sc(w) \) are the air (2.9) and water (1000) phase Schmidt numbers, respectively, and \(U_{10} \) is the wind speed at 10 m height.

3. Results and discussion

3.1. PFASs in air and surface water

3.1.1. Neutral PFASs in air

In the gas phase, 10 neutral PFASs were detected, i.e., 6:2, 8:2, 10:2, and 12:2 FTOH; 8:2 FTAC; MeFOSA; EtFOSA; MeFBSA; EtFOSE; and MeFBSE. The concentrations of the individual PFASs and neutral \(\Sigma \) PFASs are presented in Table S6 and the statistics of concentrations are presented in Table 1. The \(\Sigma \) PFAS concentrations ranged from 76 to 551 ng/L. The \(\Sigma \) FTOH concentrations (73 to 543 ng/m^3) were one to three orders of magnitude higher than the \(\Sigma \) FTACs (0.20 to 1.4 pg/m^3), \(\Sigma \) FASAs (1.3 to 11 pg/m^3), and \(\Sigma \) FSEs (0.14 to 1.5 pg/m^3). The predominant compound was 8:2 FTOH, given that it exhibited concentrations ranging from 55 to 430 pg/m^3, which accounted for 92% to 95% of the \(\Sigma \) PFASs. The concentrations of the other FTOH homologues declined in the following order: 10:2 FTOH > 12:2 FTOH > 6:2 FTOH, which were consistent with those in the atmosphere above the Japan Sea and Bering Sea (Cai et al., 2012a). The ratios of the 6:2 to 8:2 and 10:2 to 8:2 FTOHs ranged from 0.01 to 0.04 and 0.08 to 0.33, respectively. The 6:2 to 8:2 FTOH ratios were similar to the fluorotelomer-based polymers which comprise about 80% of linear fluorotelomer product (6:2 to 8:2 FTOH ratio: 0.02), and this suggests that the source is from the fluorotelomer industry. However, the 10:2 to 8:2 FTOH ratios were lower than the products (10:2 to 8:2 FTOH ratio: 0.6) (Li et al., 2011; Washington et al., 2014). One possible reason for the lower 10:2 to 8:2 FTOH ratio may be the higher 10:2 FTOH removal rate as compared to that of 8:2 FTOH in air given that the residence time of 10:2 FTOH (70 days) was shorter than 8:2 FTOH (80 days) (Lai et al., 2016). Another possible reason may be the higher affinity to particles due to the longer 10:2 FTOH chain than that of 8:2 FTOH (Z. Wang et al., 2014). The mean concentration of the \(\Sigma \) FASAs was 4.4 ± 2.6 pg/m^3, which was significantly higher than that of the \(\Sigma \) FTOHs (mean 0.61 ± 0.39 pg/m^3). FASAs last longer in air than FTOHs and have the potential to be transported across longer distances than FTOHs (D’Eon et al., 2006). MeFBSE and MeFBSE were detected in all samples, and showed higher concentrations than those of MeFOSA and Me/ EtFOSE, which may be attributed to the replacement of C₈ PFASs (Lai et al., 2016). In the air samples from the Bohai Sea, only 8:2 FTAC was detected at low levels (<0.20–1.4 pg/m^3) in the gas phase. FTACs have a relatively shorter lifetime (about 1 day) than FTOHs (about 20 days) in the atmosphere and may not be transported over long ranges (Butt et al., 2009).

3.1.2. Ionic PFASs in surface water

In the water dissolved phase, 10 PFASs were detected, specifically C₄-C₉ PFCA and C₆-C₉ PFSE, with detection frequencies ranging from 3 to 100%. The individual and ionic \(\Sigma \) PFAS concentrations are shown in Table S7. The statistics of the ionic PFAS concentrations are presented in Table 2. In the Bohai Sea, the \(\Sigma \) PFAS concentrations ranged from 3.9 to 118 ng/L (mean: 31 ± 35 ng/L, median: 15 ng/L). In the Yellow Sea and Yangtze River estuary, significantly lower \(\Sigma \) PFAS concentrations were observed than in the Bohai Sea, with concentrations ranging from 1.6 to 17 ng/L (mean: 5.4 ± 4.2 ng/L, median: 3.9 ng/L) in the Yellow Sea and from 1.7 to 12 ng/L (mean 4.9 ± 3.9 ng/L, median 3.3 ng/L) in the Yangtze River estuary. The two highest concentrations of 108 ng/L and 118 ng/L were detected at sites W65 and W66, respectively, in the Laizhou Bay, Bohai Sea, where industrial discharge from adjacent rivers may be the major sources (P. Wang et al., 2014). The \(\Sigma \) PFCA concentrations (1.4 to 117 ng/L) were dramatically higher than the \(\Sigma \) PFASs (0.1 to 1.3 ng/L) in the studied region. PFOA was the predominant compound and accounted for 51% to 90% of the
Table 2

Statistics of the ionic PFAS concentrations in surface water (ng/L).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Max</th>
<th>Min</th>
<th>Median</th>
<th>Mean</th>
<th>SD</th>
<th>Max</th>
<th>Min</th>
<th>Median</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFBS</td>
<td>0.28</td>
<td>0.12</td>
<td>0.20</td>
<td>0.21</td>
<td>0.04</td>
<td>0.22</td>
<td>0.15</td>
<td>0.23</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td>PFHxS</td>
<td>0.13</td>
<td>0.05</td>
<td>0.08</td>
<td>0.08</td>
<td>0.02</td>
<td>0.10</td>
<td>0.03</td>
<td>0.06</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>PFOS</td>
<td>0.12</td>
<td>0.03</td>
<td>0.08</td>
<td>0.08</td>
<td>0.02</td>
<td>0.11</td>
<td>0.03</td>
<td>0.06</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>PFBA</td>
<td>1.5</td>
<td>0.15</td>
<td>0.57</td>
<td>0.67</td>
<td>0.37</td>
<td>0.84</td>
<td>0.44</td>
<td>1.2</td>
<td>1.2</td>
<td>0.46</td>
</tr>
<tr>
<td>PFPeA</td>
<td>3.0</td>
<td>0.21</td>
<td>0.64</td>
<td>1.0</td>
<td>0.44</td>
<td>1.0</td>
<td>0.44</td>
<td>1.2</td>
<td>1.2</td>
<td>0.46</td>
</tr>
<tr>
<td>PFHxA</td>
<td>4.0</td>
<td>0.40</td>
<td>1.15</td>
<td>1.4</td>
<td>1.15</td>
<td>1.3</td>
<td>1.3</td>
<td>2.7</td>
<td>2.7</td>
<td>0.47</td>
</tr>
<tr>
<td>PFHpA</td>
<td>2.2</td>
<td>0.19</td>
<td>0.47</td>
<td>0.68</td>
<td>0.37</td>
<td>0.84</td>
<td>0.44</td>
<td>1.2</td>
<td>1.2</td>
<td>0.46</td>
</tr>
<tr>
<td>PFOA</td>
<td>106</td>
<td>2.3</td>
<td>11</td>
<td>14</td>
<td>1.4</td>
<td>14</td>
<td>1.4</td>
<td>26</td>
<td>26</td>
<td>2.3</td>
</tr>
<tr>
<td>PFNA</td>
<td>0.23</td>
<td>0.09</td>
<td>0.13</td>
<td>0.14</td>
<td>0.04</td>
<td>0.14</td>
<td>0.14</td>
<td>0.26</td>
<td>0.26</td>
<td>0.14</td>
</tr>
<tr>
<td>PFDA</td>
<td>106</td>
<td>2.3</td>
<td>11</td>
<td>14</td>
<td>1.4</td>
<td>14</td>
<td>1.4</td>
<td>26</td>
<td>26</td>
<td>2.3</td>
</tr>
<tr>
<td>FOSA</td>
<td>0.05</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.06</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>Total PFCAs</td>
<td>0.02</td>
</tr>
<tr>
<td>Total PFASs</td>
<td>0.05</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.06</td>
<td>0.06</td>
<td>0.02</td>
</tr>
</tbody>
</table>

3.2. Distributions, sources, and gas phase dry deposition of neutral PFASs

The spatial distribution of neutral PFASs in marine boundary air is presented in Fig. 1 and the air mass backward trajectories for each air sample are shown in Fig. S2. Samples collected in the South Yellow Sea (A1–A6) had higher total PFAS concentrations (76 to 511 pg/m³) than those from the North Yellow and Bohai Seas (A8–A14) (85 to 223 pg/m³, 146 pg/m³). Previous studies reported high neutral PFAS concentrations in air along the coastal cities of the South Yellow Sea. For instance, Li et al. (2011) reported neutral PFAS concentrations between 113 and 306 pg/m³ in the Yellow Sea coastal cities of China, and Kim et al. (2012) reported mean concentration of total FTOHs and FAS + FASes of 19,731 and 260 pg/m³, respectively, in the outdoor Korean air. Air masses from the Korea Peninsula coast and the Japan Sea (A9–A11) exhibited lower total PFAS concentrations (170 to 220 pg/m³) than those from the south Yellow Sea (A1–A8, 192 to 511 pg/m³). Cai et al. (2012a) reported a neutral gas phase total PFAS concentration of 346 pg/m³ in the Japan Sea, and
the PFASs pollution from the Japan Sea could transport to the Yellow Sea. The air mass from Mongolia and Russia (A12–A16) exhibited lower ∑ PFAS concentrations (85 to 98 pg/m³) than from the Asian background sites (110 to 140 pg/m³) (Li et al., 2011).

The results of the Pearson relationship tests are listed in Table S8. The concentrations of the FTOH homologues exhibited significant relevance (p < 0.05), thereby indicating similar sources. MeFBSA was highly correlated with FTOHs, thereby suggesting the application of C4 precursors. Interestingly, FOSE/As were not related to each other as much as the other PFASs were. The global regulation of the C8 compounds may result in complex sources other than merely C8 pollution. Moreover, the legacy precursors exhibited different particle affinities and experienced different degradation pathways, which may be the reasons for weak interrelationships (Ellis et al., 2004; Sun et al., 2015; Z. Wang et al., 2014).

Additionally, Wallington et al. (2006) calculated a 8:2 FTOH concentration of around 4 × 10^5 molecule/m³ at 50 m above the sea level in July, which corresponded to a concentration of about 308 pg/m³, in the air of Bohai and Yellow Sea by modeling. The concentrations were in the range of the monitoring data in this study. The 8:2 FTOH annual emission in the model was estimated to be 1000 tons and its global distribution was assumed to be equal to propane from industrial sources. The consistency of modeling and monitoring data suggested the similar emission volume in 2012.

3.3. Distribution and transportation of ionic PFASs in surface water

The spatial distributions of the ∑ PFASs in the surface water are presented in Fig. 2. PFOA, which exhibited a similar distribution pattern, was discussed together with the ∑ PFASs (Fig. S3). Relatively high concentrations of ∑ PFASs/PFOA (37–118 ng/L for ∑ PFASs and 33–106 ng/L for PFOA) were distributed at the mouth of the Laizhou Bay (W63–67, transect LZ), in the southern part of the Bohai Sea. The western part (W63 and W64, 52–60 ng/L) of the Laizhou Bay mouth exhibited lower ∑ PFAS concentrations than the eastern part (W65–66, 108–118 ng/L). The western part is mainly influenced by the Yellow River, which recently suffered from decreasing water discharge and serious pollution (Gao et al., 2008; He et al., 2006). The eastern part is the gateway through which coastal water and adjacent river water move out of the Laizhou Bay. In the Laizhou Bay, rivers were the major contributor of PFAS pollution (P. Wang et al., 2014; Heydebreck et al., 2015).

In the Bohai Bay, ∑ PFAS concentrations increased from the north (9.4 ng/L at W57) to the south (23.5 ng/L at W55), thereby exhibiting an inverse trend with salinity (31.2 practical salinity units (PSU) at W57 and 30.5 PSU at W55). S. Wang et al. (2015) observed similar
trends in 2011–2013, and the freshwater input was considered as the major source. For the Liaodong Bay transect (W51, W52, W53, W58, and W59, transect LD), comparable \sum PFAS concentrations around 6 ng/L were detected, except for site W59 (29 ng/L). It took at least three years for the PFASs to reach half their original concentrations in Liaodong Bay by coastal circulation (Wei et al., 2002).

Bohai Strait is the gateway for water exchange between the Bohai Sea and the Yellow Sea, given that it enters into the Bohai Sea through the southern strait and moves out from the Bohai Sea through the northern strait. For the Bohai Strait sampling transect (W48–50, transect BS), an increasing trend of \sum PFAS concentrations was found from the north to the south (from 3.06 to 10.5 ng/L), which indicates the input of PFASs from the Bohai Sea to the Yellow Sea.

In the Bohai Sea (covering 77300 km2), riverine input might be the major contributor of PFASs in coastal waters. In 2007, 2008, and 2011, Wang et al. (2012) and P. Wang et al. (2014) investigated 22 main rivers that deliver water into the Bohai Sea. The calculated input masses of PFOA was 4160 kg/a. 8:2 FTOH was one precursor of PFOA which was recognized as an indirect source. Assuming the yield of PFOA from 8:2 FTOH was about 1.5% (Ellis et al., 2004), the indirect source contributed about 1.28 ± 0.58 pg/m2 of PFOA. Considered the mean deposition velocity of 0.0091 ± 0.0015 m/s, the volume of PFOA from 8:2 FTOH degradation was estimated to be 28.4 ± 2.12 kg/a, which was significantly lower than the riverine input. Unfortunately, the particle phase was not analyzed in this study. The indirect volume only represented the gas phase. In the future, simultaneously studies of gas and particle phase should be conducted to comprehensively understand the behaviors of PFASs in the coastal air and water.

In the Chinese Yellow Sea, higher \sum PFAS concentrations were observed near the coast than in the open waters. No point sources of PFASs were discovered along the Yellow Sea coast. Ju et al. (2008) and Chen et al. (2012) investigated PFOA and PFOS along the Dalian coast. Concentrations of PFOA (0.17 to 95.7 ng/L) were significantly higher than those of PFOS (<0.10 to 2.3 ng/L). On the eastern coast of the Yellow Sea, \sum PFASs of around 10 ng/L suggested normal levels for the Korean coast (Naile et al., 2010). The marine current in the Yellow Sea was weak and the Lagrangian residual current was mostly wind-driven. The Yellow Sea coastal current transports water from the north to the south, which was conducive for the PFASs from the Shandong Peninsula to dilute and disperse. The warm Yellow Sea current delivers water from the south to the north, which was conductive for the PFASs from the western South Korean coast could be carried into the Bohai Sea.

The distribution of PFBA in the Bohai Sea and Yellow Sea was similar to PFOA and other PFCAs (Fig. 3). For PFASs, the Yangtze River estuary was the major source. Pan (2010) reported PFOS concentrations of up to 703.3 ng/L for the Yangtze River Delta. S.W. Xie et al. (2013) and T. Wang et al. (2015) investigated the industrial and domestic emissions of PFOS in China in 2010. The emission density around the Yangtze River Delta was stronger than that of the Bohai Sea and Yellow Sea coasts. Moreover, the provinces that the Yangtze River runs through, such as Hubei and Jiangxi, exhibited higher emission volumes than other central areas of China, which elevated the PFOS concentrations for the Yangtze River estuary. FOSA presented a unique distribution pattern (Fig. 3). The coasts of Qingdao City, China and South Korea were the major sources of FOSA in the Yellow Sea water. FOSA is the product of neutral PFASs and one precursor of PFOS. The occurrence of FOSA in this surface water
suggested the degradation of ionic PFASs precursors in the Bohai and Yellow Seas.

3.4. Comparison of PFAS concentrations in gaseous and dissolved phases

The neutral PFASs comparison is presented in Table S10. Comparing with other coastal regions worldwide, \(\sum \) FTOHs and 8:2 FTOH concentrations in the air above the Bohai and Yellow Seas were significantly higher than those of the air above the South China Sea (17.8 to 106 pg/m\(^3\), and 12.5 to 75.5 pg/m\(^3\), respectively) (Lai et al., 2016), German coast (7.3 to 146 pg/m\(^3\), and 4.5 to 85 pg/m\(^3\), respectively) (Z. Wang et al., 2014), Japanese coast (<0.4 to 5.0 pg/m\(^3\)) (Piekarz et al., 2007), and east coast of the USA (5.46 to 156 pg/m\(^3\), and 1.65 to 91.3 pg/m\(^3\), respectively) (Shoeib et al., 2010). Concentrations of MeFBSA/E in the air were higher than those in the air above the North Atlantic Ocean (0.11 to 0.44 pg/m\(^3\), and 0.09 to 0.57 pg/m\(^3\), respectively) (Z. Wang et al., 2015), but lower than those in the North Sea coastal air (0.1 to 3.9 pg/m\(^3\), and nd to 4.6 pg/m\(^3\), respectively) (Z. Xie et al., 2013), and western Antarctic Peninsula coastal air (0.4 to 5.4 pg/m\(^3\), and 0.2 to 14.1 pg/m\(^3\), respectively) (Del Vento et al., 2012). As for FASA/Es, concentrations in air from the Bohai and Yellow Seas were comparable to those reported at Büsum on the German coast (0.4 to 13 pg/m\(^3\), and 0.5 to 3.6 pg/m\(^3\), respectively) for samples collected in 2011–2012 (Z. Wang et al., 2014). In most of the northern hemisphere, including the Arctic region (Ahrens et al., 2011), North Atlantic Ocean coast of Europe (Jahnke et al., 2007), Japan Sea to the Arctic Ocean (Cai et al., 2012), and east coast of the USA (Shoeib et al., 2010), higher FASE concentrations were observed as compared to those in the air of the Bohai and Yellow Seas. Conversely, the FASA concentrations exhibited an inverse pattern.

Table S11 presents the PFOA and PFOS concentrations in the coastal and marine surface waters of China. The concentrations of PFOA (2.3 to 106 ng/L) in the Bohai Sea water in the current study were comparable to those for the Dalian Coast (1.5 to 95.7 ng/L) (Chen et al., 2012). For the Yellow Sea (0.89 to 14 ng/L) and Yangtze River estuary, the PFOA concentrations (0.98 to 6.9 ng/L) were comparable to those for the coastal areas of Hong Kong (0.67 to 5.5 ng/L), though these were higher than those for the eastern and southern Chinese coasts (0.04 to 1.5 ng/L) and the South China Sea (0.16 to 0.42 ng/L) (Yamashita et al., 2005). As compared to other coastal areas globally, the PFOA concentrations in the Bohai Sea water were similar to those of the Tokyo Bay water (2.7 to 63 ng/L), which is a semiclosed bay in Japan (Sakurai et al., 2010). The PFOA concentrations in the waters of the Yellow Sea and Yangtze River estuary were similar to those in the Baltic Sea (0.25 to 4.45 ng/L) (Ahrens et al., 2010), but higher than those in the waters of the North Sea (<0.2 to 2.43 ng/L) and coastal...
Norway (0.07 to 0.35 ng/L) [Ahrens et al., 2010]. The PFOA concentrations in the waters of the Bohai Sea (<0.03 to 0.12 ng/L), Yellow Sea (<0.03 to 0.11 ng/L), and Yangtze River estuary (<0.03 to 0.20 ng/L) were comparable to those of the Dalian coast, China (0.1 to 0.2 ng/L) [Chen et al., 2012], eastern to southern Chinese coasts (0.02 to 0.07 ng/L) [Cai et al., 2012b], and the South China Sea (0.008 to 0.11 ng/L) [Yamashita et al., 2005]. Kwok et al. (2015) investigated the PFOA and PFOS levels in the South China Sea for the same year (2012) as the current study. Concentrations of PFOA in the South China Sea in 2012 were significantly lower than those in the Bohai Sea, Yellow Sea, and Yangtze River estuary. In contrast, the PFOS concentrations in the South China Sea were higher than those of the presently studied seas. Additionally, the PFOS concentrations were higher than the PFOA concentrations in the South China Sea, and the same compositional pattern was observed in the surface river waters from the Pearl River or the Pearl River estuary [Liu et al., 2015; Pan et al., 2014; So et al., 2007; Zhang et al., 2013]. However, an inverse pattern was observed in the Bohai Sea, Yellow Sea, and Yangtze River estuary, as well as most other rivers studied in China [Chen et al., 2017; Sun et al., 2017; P. Wang et al., 2014; Wang et al., 2012]. This may be due to the evaluation of PFOA and PFOS in Chinese surface waters conducted mainly after 2002, the year when the production of PFOS and related compounds in North American and European countries dramatically decreased due to the execution of the voluntary phase-out. Although the manufacturing of PFOS in China increased from 2002, the volume was much lower than it was globally before 2002 [MIEP, 2008]. Moreover, the introduction of a shorter-chained substitute resulted in higher PFBS concentrations than for PFOS in industrial parks [Chen et al., 2015; Jin et al., 2015] and inland lakes (for instance, the Tangxun Lake). As compared to PFOS, the voluntary phase-out of PFOA was executed much later (2015), and until recently, no global legislation had been proposed. Only one study collected river waters from the Hun River in Liaoning Province in 2002, exhibited significantly higher PFOS concentrations (0.2 to 44.6 ng/L) as compared to PFOA (<0.1 to 1.6 ng/L) [Jin et al., 2009].

4. Conclusion

Concentrations of the neutral PFASs in the gas phase were consistent with those reported in the urban and rural regions of China. Air masses with higher concentrations were mainly transported from the coast of the Yellow Sea, including the Chinese and South Korean sides, whereas air masses with lower concentrations were mainly passed through the Yellow Sea and Japan Sea, northeastern China, Mongolia, and Russia. PFOA was the predominant ionic congener and accounted for 51%–90% of the ionic ∑PFASs in surface water. The spatial distribution indicated that the major source of PCAs was located around the Laizhou Bay, whereas for the PFASs, the Yangtze River estuary exhibited higher concentrations than the other areas. The semiclosed geographical conditions influenced the dispersion, dilution, and exchange of PFASs in the Bohai Sea. Direct releases from the industrial and domestic activities were the main sources, whereas contribution from the degradation of neutral PFASs was minimal.

Acknowledgement

This study was supported by the Natural Science Foundation of China (NSFC 41603101) and Chinese Academy of Sciences (13337 KYSB20130013, 2013T220032, KZZD-EW-14, and XDA11020401). We are grateful for the field assistance from the crew of Research Vessel Dongfanghong 2 of the Ocean University of China.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.scitotenv.2017.04.147.

