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1  Introduction

Photocatalysis on TiO2 has attracted much attention espe-
cially in the field of environmental pollution abatement, 
such as air cleaning, self-cleaning windows and surfaces and 
waste water purification [1–3]. Air cleaning and self-clean-
ing typically rely on the adsorption of organic pollutants on 
TiO2 which is illuminated by UV or solar light under certain 
humidity. In waste water purification the polluted water is 
flowed through a TiO2 layer immobilized on a photoreactor 
under UV or solar light illumination. The catalytic activ-
ity is based on the photogeneration of electron—hole pairs 
in the semiconductor. These charge carriers either recom-
bine inside the particle or move to its surface where they 
can react with adsorbed molecules. Holes usually oxidize 
organic compounds, inducing their oxidative degradation, 
while electrons mainly reduce molecular oxygen to super-
oxide radicals and then other reactive oxygen species, also 
leading to the degradation of organic compounds.

Among the large variety of environmental pollutants, 
aromatic compounds occupy an important place due to its 
toxicities and unusual stability. Catechol and its deriva-
tives are important intermediates in the photo-degradation 
of benzene and its derivatives because OH radicals attack 
the aromatic ring before the latter is cleaved [4, 5]. The 
two hydroxyl groups of catechol and its derivatives lead to 
strong adsorption on TiO2, which may be a crucial factor for 
the cleavage of the aromatic ring [6]. Aliphatic carboxylic 
acids are subsequently formed after the opening of aromatic 
ring, which also bind to TiO2 [7]. The acids are then further 
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2.3  In Situ Spectroscopy

ATR spectra were recorded with a dedicated flow-through 
cell, made from a Teflon piece, a fused silica plate (45  × 45 
× 3 mm) with holes for the inlet and outlet (36 mm apart), and 
a flat (1 mm) viton seal. The cell was mounted on an attach-
ment for ATR measurements within the sample compart-
ment of a Bruker Equinox-55 FTIR spectrometer equipped 
with a narrow-band MCT detector. Spectra were recorded at 
4 cm−1. 200 scans were accumulated for one spectrum. For 
experiments in flowing liquid water, the reactant solution 
was passed through the cell and over the catalyst at a flow 
rate of 0.2 mL/min by means of a peristaltic pump (Ismatec, 
Reglo 100) located in front of the cell. For the experiments 
with flowing wet air/nitrogen water was heated at a certain 
temperature within a bottle with two inlets/outlets in order 
to saturate the vapor phase. The water vapor was then driven 
over the sample using a peristaltic pump at 0.2 ml/min. The 
water vapor was cooled to 20 °C before entering the cell.

For irradiation of the sample, UV light was provided by 
a 75 W Xenon arc lamp. The UV light from the source was 
guided to the ATR-IR cell via two fiber bundles. The light 
was passed through a 5-cm water filter to remove any infra-
red radiation. A Schott UG 11 (50 × 50 × 1 mm) broadband 
filter from ITOS was used to remove visible light (trans-
mission at 270–380 nm). The irradiance at the sample was 
slightly below 10 mW/cm2.

3  Results and Discussion

3.1  Adsorption and Desorption of 
3,4-Dihydroxybenzoic Acid

ATR-FTIR is a valuable tool to characterise in detail the 
surface state of solid particles, and a detailed characteri-
sation of the evolution of surface speciation will help the 
understanding of the involved mechanisms and therefore 
facilitate the improvement of the photomineralisation pro-
cesses. In the ATR-FTIR spectrum of 3,4-dihydroxybenzoic 
acid the peak at 1288 cm−1, assigned to the Ph-OH bend-
ing vibration, disappeared upon adsorption but a new strong 
peak appeared at 1278 cm−1 as shown in Fig. 1 (A) and (B) 
[9]. This strong peak corresponds to the Ph-O-Ti vibration, 
which indicates that 3,4-hydroxybenzoic acid is present on 
the TiO2 surface as catecholate, in which the two oxygens 
in the phenolic groups coordinate with one Ti atom [10, 11]. 
The two bands in Fig. 1 (B) at 1517 cm−1 and 1370 cm−1 
were assigned to the νas (COO−) and the νs(COO−) of the 
adsorbed molecule [9]. These two bands disappear when 
the solution pH was lowered to 1.5, while a new peak at 
1703 cm−1 assign to ν(C = O) appears. In solution the corre-
sponding peak is observed at 1688 cm−1. Thus, the adsorbed 

decomposed. For example it has been shown that succinate 
decomposes to malonate which leads to oxalate and finally 
CO2 [8].

Attenuated total reflection infrared spectroscopy (ATR-
FTIR) provides a sensitive tool for the analysis of surface-
bound molecules, making it a powerful technique for the 
study of photocatalytic reactions taking place at the surface 
of a semi-conductor. In particular, the technique, which 
uses the evanescent field formed at the interface between an 
internal reflection element and the sample, enables one to 
study the corresponding interface in situ, i.e. during illumi-
nation and in the presence of liquid water.

In this paper 3,4-dihydroxybenzoic acid is used as a 
model organic compound and its photodegradation is stud-
ied by in situ ATR-FTIR in order to characterize the nature 
of the interface and its adsorbates during illumination. We 
furthermore focused on two main questions: (1) What are 
the roles of water and oxygen? (2) What kind of oxidizing 
agent plays the important role in opening of the aromatic 
ring and the mineralization of the aliphatic acid?

2  Experimental

2.1  Catalyst and Chemicals

Degussa P25 TiO2, containing 80 % anatase and 20 % rutile 
with a surface area of 51 m2/g and average primary particle 
size of 21 nm, was used in the photocatalysis experiments. 
3,4-dihydroxybenzoic acid (Sigma–Aldrich, >97 %) was 
used as received. Nitrogen (N2, 99.995 %) from CarbaGas, 
was used to remove oxygen from the reaction system.

2.2  Thin-Film Preparation

A slurry of the catalyst powder was prepared from 10 mg 
catalyst and 10 mL of water (Milli-Q, 18 MΩ cm). After 
sonication (Branson 200 ultrasonic cleaner) for 30 min, the 
mixture was spin coated onto a cleaned Ge internal reflection 
element (IRE) (52 × 20 × 2 mm; KOMLAS) at 1000 rpm for 
2 min ten times. The as-deposited film was dried at 120 °C 
for 12 h. Scanning electron microscopy shows that this pro-
cedure leads to homogeneous films with an estimated film 
thickness on the order of one micrometer. Fresh films were 
prepared every day, and results were reproduced on differ-
ent catalyst films. For experiments in flowing wet air the 
3,4-dihydroxybenzoic acid was adsorbed on the TiO2 film by 
immersing the film into 3,4-dihydroxybenzoic acid solution 
(4 × 10−5 M) for 1 h. The film was then washed with water 
to get rid of the weakly adsorbed 3,4-dihydroxybenzoic acid 
and blowed dry with nitrogen gas. Test experiments showed 
that no adsorption and no reaction took place (within the 
detection limit of the ATR-FTIR) in the absence of TiO2.
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sample. The other species may be physisorbed interacting 
with the surface through ionic bonds, hydrogen bonds, elec-
trostatic interaction or van der Waals force [12]. Upon UV 
irradiation also the chemisorbed species is removed from 
the surface as can be seen in Fig. 2.

An indication on the strength of adsorbate binding can 
be obtained from isotherm data. Assuming a Langmuir 
isotherm and that the measured absorbance is directly pro-
portional to the amount adsorbed, which is a good approxi-
mation, the following equation can be derived [13]:

 (1)

Here C0 is the concentration of 3,4-dihydroxybenzoic acid 
in solution, A is the measured absorbance of the adsorbed 
3,4-dihydroxybenzoic acid, Amax is the absorbance for 
maximum coverage and K is the equilibrium constant for 
adsorption. Figure 3 shows the adsorption isotherms of 
3,4-dihydroxybenzoic acid from 10 −5 to 2 × 10−4 M on TiO2 
at pH 6.5. C0/A vs. C0 plots constructed from the absor-
bance band at 1278 cm−1 in the spectra gave a straight line 
as shown in Fig. 4. From this the maximum coverage absor-
bance Amax = 0.0013 and Langmuir adsorption constant 
K = 1.5 × 105 M−1 were obtained thus demonstrating that the 
adsorption is quite strong.

3.2  Photodegradation in Flowing Water

Figure 5 shows ATR-FTIR spectra recorded during the 
photodegradation of 3,4-dihydroxybenzoic acid. The spec-
tra were recorded after adsorption of the molecule till full 
coverage and after desorption in flowing water. This leaves 
behind on the surface only the strongly adsorbed species. 
The spectrum recorded just before starting UV illumina-
tion was taken as the background. Negative signals of 
3,4-dihydroxybenzoic acid becoming more prominent 
with illumination time indicate the removal 3,4-dihy-
droxybenzoic acid from TiO2. Upon illumination and pho-
todegradation of 3,4-dihydroxybenzoic acid a new band 
at 1638 cm−1 is observed in the ATR-FTIR spectra, which 
is assigned to the bending mode from water that replaces 
3,4-dihydroxybenzoic acid on the TiO2 surface [14]. No 
significant bands that could be associated with intermedi-
ates of the photodegradation of 3,4-dihydroxybenzoic acid 
were observed.

Phenol derivatives usually mineralize to CO2 over TiO2 
with carboxylic acid and dicarboxylic acid as intermedi-
ates [15]. There is no clear evidence of carboxylic acid 
absorption in the spectra, which might be partly due to 
spectral overlap between the bands of 3,4-dihydroxyben-
zoic acid on TiO2 and the νas(COO) and νs(COO) bands of 
the acids. Also, under the flowing water conditions applied 
here the acids are removed fast from the evanescent field. 

C /A  =  C /A   +  1/(A K)0 0 max max

3,4-dihydroxybenzoic acid may undergo deprotonation/pro-
tonation at the –COOH moiety, suggesting that this group is 
not involved in complexation of Ti atoms [10].

The 3,4-hydroxybenzoic acid attained dark adsorption 
equilibrium after about 40 min as seen from Fig. 2, where 
the absorbance at 1278 cm−1 is plotted as a function of time. 
When subsequently flowing water over the sample one 
part of the adsorbed molecules leave the surface. Within 
30 min about 50 % is desorbing, but after that desorption 
of 3,4-dihydroxybenzoic acid from TiO2 is slow when rins-
ing with water at pH 6.5. This indicates the presence of two 
differently adsorbed species, one desorbing faster than the 
other. One possible interpretation of this finding is the pres-
ence of a chemisorbed species with the formation Ph-O-
Ti, which is difficult to desorb by flowing water over the 
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3.3  Effects of Water on Photodegradation

In an attempt to understand the influence of liquid water on 
the photooxidation of 3,4-dihydroxybenzoic acid and to cap-
ture possible photodegradation intermediates, the UV illumi-
nation of adsorbed 3,4-dihydroxybenzoic acid on TiO2 was 
performed in wet air containing different amounts of water.

Under wet air conditions the Ph-O-Ti vibration observed at 
1278 cm−1 in aqueous solution shifts to 1266 cm−1 as shown 
in Fig. 7. The shift may be caused by a loss of hydrogen 
bonding interactions and/or redistribution of electron den-
sity within the organic molecule [17]. The absorbance band 
at 1638 cm−1 associated with adsorbed water increased with 
time of photodegradation of 3,4-dihydroxybenzoic acid and 
increase of water content in air flow through the cell, which 
is controlled by the temperature in the water saturation sys-
tem. The rate of photodegradation of 3,4-dihydroxybenzoic 

Furthermore, the degradation of carboxylic acids should 
be fast under the applied conditions, which leads to a low 
concentration of acids on the surface [16]. However, as 
shown in Fig. 6 the bands at 1278  and 1372 cm−1 decrease 
at different rates under UV illumination, the 1278 cm−1 
band decreasing faster. This is at least an indication that 
at 1372 cm−1 a spectral overlap occurs with a species that 
is formed during illumination such as the νs(COO) band of 
carboxylic acids. One prominent species on the TiO2 sur-
face during photocatalytic degradation of carboxylic acids 
is oxalate. This species is almost at the end of the degrada-
tion chain and shows prominent signals around 1700 cm−1. 
In the spectra in Fig. 5 only a small signal is observed in 
this spectral region.
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for carbonates on the surface. There are two broad bands 
slightly below 1600 cm−1 and slightly above 1300 cm−1 and 
a sharper band at 1317 cm−1 that might be assigned to car-
bonates [8, 22]. Carbonates can be formed from CO2, which 
is the final photodegradation product. The spectra in Fig. 7 
indicate that carbonates can only be formed at higher water 
levels. This could mean that the carbonates form already in 
the water phase and adsorb on TiO2 as such, in contrast to 
being formed directly on the TiO2 surface.

3.4  Effects of Oxygen on Photodegradation

As mentioned above oxygen plays an important role as elec-
tron acceptor and in the formation of reactive oxygen spe-
cies, which usually promote the photodegradation of organic 
pollutants. It was reported that molecular oxygen is the ulti-
mate ring-opening agent of 3,5-di-tert-butylcatechol in TiO2 
photocatalysis using water/acetonitrile mixed solvent [6]. 
However, the photodegradation of 3,4-dihydroxybenzoic 
acid observed in the absence of oxygen as can be seen from 
Fig. 8 by monitoring the absorbance at 1266 cm−1. There 
is a broad band appearing at 1630 ~ 1540 cm−1 and several 
peaks at 1463 ~ 1327 cm−1, which can be assigned to the 
νas(COO) and νs(COO) vibrations, respectively, of various 
carboxylic acids [23, 24]. The absorbance at 1708 cm−1 is 
assigned to oxalate. The broad peak above 1700 cm−1 is due 
to the C = O stretching vibration of various carboxylic acids 
[23, 24]. Taking into account the findings described in ref. 
6, different ring-opening mechanisms may occur depending 
on the structure of organic compound and the solvent. On 
the one hand, electronic effect of substituents on the aryl 
ring plays an important role in the catechol dioxygenation 
and subsequent ring-opening reaction, and the electron-
donating substituents would facilitate this reaction [25]. On 
the other hand, the existence of organic solvent may affect 
the formation of OH radicals.

acid, as measured by the decrease of the absorbance band 
at 1266 cm−1, increased with the water content on the TiO2 
surface.

Organic pollutants can be oxidized in different ways 
over TiO2 photocatalyst. The absorption of a photon with 
energy larger than the band gap of TiO2 can excite an elec-
tron from the valence band to the conduction band thus pro-
ducing reductive conduction band electrons and oxidative 
valence band holes [18]. The holes can react with adsorbed 
water to produce OH radicals or directly oxidize adsorbed 
organic pollutants to their radicals. In the presence of oxy-
gen, the conduction band electrons are usually scavenged 
by O2 to yield superoxide radical anions and H2O2, which 
are involved in the production of OH radicals in aqueous 
solution [19]. The formation of OH radicals and other reac-
tive oxygen species via the two pathways described above 
requires water. The rate of the photocatalytic oxidation path-
way of 3,4-dihydroxybenzoic acid via OH radicals is thus 
expected to depend on the water content on the TiO2 surface. 
A faster rate is expected in higher humidity air. Figure 7 sup-
ports this idea. At higher levels of adsorbed water, as evi-
denced by the band at 1638 cm−1, the photodegradation of 
3,4-dihydroxybenzoic acid is faster, as shown by the band 
at 1266 cm−1.

The signal in Fig. 7 at 1720 cm−1 as a shoulder in the 
high water content spectrum or at 1708 cm−1 at low water 
content is assigned to oxalate on TiO2 in different adsorp-
tion modes and different surface environment [20, 21]. This 
indicates that oxalate is one of the most important interme-
diates of 3,4-dihydroxybenzoic acid photodegradation and 
it could be one of the bottlenecks in the complete mineral-
ization of 3,4-dihydroxybenzoic acid to CO2. At high water 
content, see top spectrum in Fig. 7, there is some evidence 
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The above observations indicate that photodegradation 
of 3,4-dihydroxybenzoic acid proceeds via three main steps: 
first, the aromatic ring is cleaved and various aliphatic car-
boxylic acids are formed; second, the aliphatic acids shorten 
its hydrocarbon chain to form oxalate [8] and finally the 
oxalate is also transformed to CO2. The rates of the vari-
ous reaction steps can be influenced by oxygen mainly in 
two ways. Oxygen acts as an acceptor for the electron of 
the photogenerated electron–hole pair. The resulting reac-
tive oxygen species can directly attack adsorbed molecules. 
Furthermore, the acceptance of the electron leads to an 
increased life time of the photogenerated hole. The photo-
degradation rate of 3,4-dihydroxybenzoic acid and its pho-
todegradation intermediate products would decrease in the 
absence of oxygen. The hole will be the only oxidation cen-
ter in the absence of oxygen, reacting with surface adsorbed 
water to produce OH radicals or directly oxidize adsorbed 
organic.

The spectra in Fig. 8 show that the 3,4-dihydroxyben-
zoic acid ring opening reaction is observed in the presence 
and absence of oxygen, but much more carboxylic acid are 
formed in the absence of oxygen. This suggests that hole 
oxidation plays a prominent role in the ring open reaction of 
3,4-dihydroxybenzoic acid, but oxygen and reactive oxygen 
species play a more important roles in the consecutive short-
ening of the hydrocarbon chain.

4  Conclusion

3,4-dihydroxybenzoic acid shows strong absorption on 
TiO2, which provides the possibility for photodegradation 
under TiO2 catalysis. Water and oxygen play important roles 
for the reaction rate as well as the relative rate of different 
reaction pathways, which is determined by the formation 
of reactive oxidation species. The photodegradation rate of 
3,4-dihydroxybenzoic acid increased with increasing the 
content of water vapor in air. Absence of oxygen decreased 
the photodegradation of 3,4-dihydroxybenzoic acid but 
increased the intermediate products formed on TiO2. ATR-
FTIR provides detailed information about the time evolu-
tion of the photocatalytic surface during illumination.
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