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The statisticalmethods based on extreme value theory have been traditionally used inmeteorology and hydrology
for a long time. Due to climate change and variability, the hypothesis of stationarity inmeteorological or hydrolog-
ical time series was usually not satisfied. In this paper, a nonstationary extreme value analysis was conducted for
annual maximum daily precipitation (AMP) at 631 meteorological stations over China for the period 1951–2013.
Stationarity of all 631 AMP time series was firstly tested using KPSS test method, and only 48 AMP time series
showed non-stationarity at 5% significance level. The trends of these 48 nonstationary AMP time series were fur-
ther tested using M-K test method. There were 25 nonstationary AMP time series mainly distributed in southern
and western China showing significant positive trend at 5% level. Another 5 nonstationary AMP time series with
significant negative trends were near northern urban agglomeration, Sichuan Basin, and central China. For these
nonstationary AMP time series with significant positive or negative trends, the location parameter in generalized
extreme value (GEV) distributionwas assumed to be time-varying, and the trendswere successfully characterized
by the nonstationary GEVmodels. For the remaining 18 nonstationary AMP time series mainly in the eastern por-
tion of China, no significant trend was detected. The correlation analysis showed that only 5 nonstationary AMP
time series were significantly correlated with one or two of the four climate indices EASMI, WPI, SOI, and PDO.
Then, the location and scale parameters in the GEV distribution were modeled as functions of the significantly
correlated climate indices. The modeling results in this study showed that the nonstationary GEV distributions
performed better than their stationary equivalents. Finally, 20-year and 50-year return levels of precipitation
extremes at all 631 stations were estimated using the best fitting distribution for the year 1961 and 2013,
respectively.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Extreme value theory (EVT), one of the important branches of
statistics, has been widely used in meteorology and hydrology for a
long time (Katz et al., 2002; Soukissian and Tsalis, 2015). Climate or
hydrology extremes could be successfully characterized by the probabil-
ity distributions derived from EVT (Feng et al., 2007; Li et al., 2013). For
the most part, EVT applied in meteorology and hydrology assumes that
these extreme events are stationary (Katz et al., 2002). However, the
stationarity assumption has been gradually challenged due to climate
change and variability or human intervention (Salas and Obeysekera,
2014). Then, climatic and hydrological extremes exhibit some type
of non-stationarity in the form of trends, shifts or a combination of
them (Olsen et al., 1999; Kiem et al., 2003; Villarini et al., 2009). Non-
stationaritymay affect both the severity and frequency of these extreme
events (Olsen et al., 1998; Wigley, 2009; Mika, 2013; Radinović and
Ćurić, 2014; Monier and Gao, 2015); therefore, it is suggested that non-
stationary probability distributionmodels need to be identified andpos-
sibly used for risk management and engineering design (Katz, 2013;
Cheng et al., 2014; Salas and Obeysekera, 2014).

In this paper, we apply nonstationary modeling technique to study
theprecipitation extremes over China for the period 1951–2013. Precip-
itation is very crucial to our planet, because it is a major component of
the water cycle by depositing most of the fresh water (Radinović and
Ćurić, 2009). However, extreme precipitation events also cause floods
resulting in great loss of lives and properties, especially in extreme
seasons (Radinović and Ćurić, 2013, 2014). China also suffers from
floods caused by precipitation extremes (Zhai et al., 2005); therefore,
it is worthy to assess the adverse influences of extreme precipitation
events. In recent literatures, changes in trend and frequency have
been detected in precipitation extremes in China (Zhai et al., 2005; Su
et al., 2006; Qian and Qin, 2008; Xu et al., 2011; You et al., 2011).
The non-stationarity in the extreme precipitation time series was also
successfully modeled with generalized extreme value (GEV) and
generalized Pareto distribution (GPD) by introducing inconstant parame-
ters (Fischer et al., 2012a, 2012b; Feng et al., 2007; Du et al., 2014). These
previous studies primarily focused attention on the long term trends of
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precipitation extremes and its correlation with climate change, but
non-stationarity in precipitation extremes related to climate change
and variability has not been extensively studied.

China is located in East Asia; therefore, the climate is strongly
influenced by the important subsystem of Asian monsoon, East Asian
monsoon (Ding and Chan, 2005; Zhou et al., 2008). Specifically, it was
found that East Asian summer monsoon determined the spatio-
temporal variability of summer rainfall over China (Ding and Chan,
2005; Zhao and Zhou, 2009). The Western Pacific subtropical high is
also an important weather and climate system in the Asian monsoon re-
gion that contributes largely to the complexity and variability of the
China's rainfall distribution and precipitation anomalies in summer (Sui
et al., 2007; Zhang et al., 2015). TheAsianmonsoon system is also strongly
affected by El Niño Southern Oscillation (ENSO) that has the greatest im-
pact on the year-to-year variability of the global climate (Tanaka, 1997;
Wang et al., 2000). Moreover, some low-frequency climate variability
such as Pacific Decadal Oscillation (PDO) also influences global precipita-
tion anomalies on decadal timescale (Kiem et al., 2003; Villafuerte et al.,
2014). To represent the dependence of meteorological time series on
climatic forcing, nonstationary extreme value distribution model taking
climate indices as covariates have been applied (Villarini et al., 2010). In
this study, we also use nonstationary GEV distribution with time and
climate indices as the potential covariates to model the nonstationary
precipitation extremes in China.

2. Data

The daily precipitation dataset (1951–2013) that was provided by
the National Meteorological Information Center (NMIC) of China
Meteorological Administration (CMA) was used to extract extreme
precipitation time series. The data quality was also controlled by the
NMIC (Qian and Lin, 2005). There are 631meteorological stations having
the good quality and continuous daily records longer than 50 years
(Fig. 1). In this study, extreme precipitation is defined as the maximum
daily precipitation, and then the annual maximum daily precipitation
(AMP) time series at all 631 stations could be simply computed using
the daily precipitation dataset. Each station was labeled by a unique ID
coded using 6-digit number.

The East Asian summer monsoon index (EASMI, Fig. 2) is defined as
an area-averaged seasonally (JJA) dynamical normalized seasonality
(DNS) at 850 hPa within the East Asian monsoon domain (10°–40°N,
110°–140°E) (Li and Zeng, 2003, 2005). The annual EASMI time series
was collected by Dr. Li J.P. and can be directly downloaded from the
following website (http://ljp.gcess.cn/dct/page/65577).

The Western Pacific subtropical high is quantified by WP index
(WPI, Fig. 2) that signifies the zonal and meridional variation of the
Fig. 1. Geographical distribution of the 631 meteorological stations in China.
location and intensity of the East Asian jet stream entrance region
(Barnston and Livezey, 1987). The WPI data (monthly/annual) was
provided by the U.S. National Centers for Environmental Prediction
(NCEP, http://www.cpc.ncep.noaa.gov/data/).

ENSO is generally at its peak during November–January (Trenberth,
1997), and its effect on extreme precipitation is in the following
summer (Lin and Lu, 2009). In this study, the Southern Oscillation
Index (SOI, Fig. 2), which is a standardized difference between the
two barometric pressures between observation stations at Darwin,
Australia and Tahiti, is used to quantify ENSO.We computed the average
of monthly SOI from November to next January to generate the SOI
series from 1950 to 2012. The monthly SOI index could be directly
downloaded from national center for environmental information,
NOAA (http://www.ncdc.noaa.gov/).

PDO index (Fig. 2) is the standardized principal component time se-
ries, and themonthly time series of PDO index since 1900 can be obtain-
ed from the following website http://research.jisao.washington.edu/
pdo/PDO.latest. In this study, the annual PDO index was based on the
average November–March leading principal component of monthly
SST anomalies poleward of 20°N in the Pacific Ocean (Mantua and
Hare, 2002).

3. Methodology

Stationarity and trend of the AMP time series will be firstly tested.
Only nonstationary AMP time series are modeled by nonstationary
GEV distribution. For nonstationary AMP time series with significant
trends, time will be chosen as covariate in location parameter of GEV
distribution. Otherwise, significant correlated climate indices are used
as covariates in both location and scale parameter in GEV distribution,
respectively. With the best fitting GEV distribution model, return levels
are also estimated.

3.1. Test methods

The stationarity test is carried out using KPSS test method
(Kwiatkowski et al., 1992). The objective time series is assumed to be
the sum of deterministic trend, random walk, and stationary error
with the following linear regression model

xt ¼ rt þ βt þ εt ð1Þ

where rt is a randomwalk, βt is a deterministic trend, and εt is a station-
ary error. Here, rt=rt−1+ut, and ut is independent and identical dis-
tributed N(0,σu

2). If the time series is stationary around a deterministic
trend, the null hypothesis is σu

2=0, while the alternative hypothesis is
σ u

2N0. In another case, if the time series is stationary around a fixed
level, the null hypothesis will be βt=0. In this study, the stationarity
test will be implemented using package “tseries” in R environment
(R Development Core Team, 2014).

The Mann–Kendall (M-K) test method is applied for detecting
monotonic trends in the AMP time series. The M-K test is a rank-based
nonparametric trend detection method that is less sensitive to outliers
than parametric statistics, such as Pearson's correlation coefficient
(Kendall, 1938; Mann, 1945). The null hypothesis in M-K test states
that there is no trend in the time series and observations are randomly
ordered. On the contrary, the alternative hypothesis means that there
are increasing or decreasing monotonic trends. In this study, the
detection of trend will be completed using the package “Kendall” in R
environment.

The statistical dependence of AMP time series on climate indices
(EASMI, WPI, SOI, and PDO) is tested using Spearman's correlation test
method. Assuming there are two time series of Xt and Yt of size n, xi
and yi are the corresponding ranks, then the difference between ranks
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is computed as di=xi−yi. Then, the rank correlation coefficient ρ is
computed as

ρ ¼ 1−
6∑d2i

n n2−1ð Þ ð2Þ

A positive ρ corresponds to an increasing monotonic trend between
X and Y, while a negative ρ corresponds to a decreasing monotonic
trend. In this study, Spearman's correlation test is completed using
package “stats” in R environment.

3.2. Nonstationary GEV model

According to EVT, the probability distribution of extremes extracted
from a time series asymptotically approaches the generalized extreme
value (GEV) distribution as the number of samples becomes large
(Jenkinson, 1955). The probability distribution function of the GEV
distribution is given by:

F x; μ;σ ; ξð Þ ¼ exp − exp − 1þ ξ
x−μ
σ

� �h in o
; 1þ ξ x−μð Þ

σ
N0 ð3Þ

where μ, σ and ξ are the location, scale, and shape parameters, respec-
tively. Constant parameters correspond to stationary GEV distribution
model.

Non-stationarity is introduced by expressing one or more of the
parameters of the GEV distribution as a function of time, or climate
indices. For nonstationary AMP time series with significant trend, the
Fig. 2. Time series of four climate ind
location parameter follows a linear model of the year: μ=μ0+μ1*yt.
For nonstationary AMP time series with nonsignificant trend, climate
index that is significantly correlated with AMP time series will be used
as covariates. Here, for simplicity the shape parameter ξ is supposed
to be constant, and the location parameter and shaper parameter is
assumed to be linearly dependent on one or more climate indices:

μ ¼ μ0 þ μ1y1 þ μ2y2 þ… ð4Þ

σ ¼ σ0 þ σ1y1 þ σ2y2 þ… ð5Þ

where yi is the i-th climate index. μi andσi are the coefficients of the linear
models needed to be estimated. Maximum likelihood method is used
for parameter estimation in both stationary and nonstationary GEV
distributions.

For the purpose of comparison, stationary GEV distribution that is
referred to as M0. Nonstationary GEV distribution with time or one
climate index as covariate in location parameter will be referred as
M1. The goodness of fit of two models M0 and M1 will be compared
using likelihood ratio test (Coles, 2001) since M0 can be treated as a
special case of M1. Akaike information criterion (AIC) is also computed
formodel fitting evaluation (Akaike, 1974). For nonstationary AMP time
series without significant trend, a variety of nonstationary GEV distribu-
tion models can be derived from Eqs. (4) and (5). If the focal AMP time
series is significantly correlated with one (or two) climate index, three
(or fifteen) nonstationary GEV distribution models will be fitted. If the
focal AMP time series is significantly correlated with more than two cli-
mate indices, only two climate indices with larger absolute correlation
ices: EASMI, WPI, SOI, and PDO.



Table 1
The modeling results for the 30 nonstationary AMP time series with significant trends.

Class
Station
ID

Lat
(N) Lon (E)

AICa

p-Value§
Model
0

Model
1

Non-stationary,
significant positive
trend

51,087 46°59′ 89°31′ 410.006 400.791 0.001
51,186 46°40′ 90°23′ 393.726 379.763 0.000
51,241 45°56′ 83°36′ 397.000 395.007 0.046
51,431 43°57′ 81°20′ 422.595 420.917 0.055
51,720 40°30′ 79°3′ 404.740 399.467 0.007
51,777 39°2′ 88°10′ 407.340 406.256 0.079
52,101 43°36′ 93°3′ 425.391 420.420 0.008
52,112 43°46′ 95°8′ 304.905 303.767 0.076
52,495 40°10′ 104°48′ 425.274 423.172 0.043
52,576 39°13′ 101°41′ 400.729 384.824 0.000
52,737 37°22′ 97°22′ 411.851 399.214 0.000
52,825 36°26′ 96°25′ 336.056 337.868 0.665
52,836 36°18′ 98°6′ 392.744 390.317 0.035
55,279 31°23′ 90°1′ 375.764 369.823 0.005
55,472 30°57′ 88°38′ 338.596 327.514 0.000
55,664 28°38′ 87°5′ 408.523 404.140 0.012
56,459 27°56′ 101°16′ 411.772 407.557 0.013
57,237 32°4′ 108°2′ 634.187 630.385 0.016
57,405 30°30′ 105°33′ 636.960 637.981 0.323
57,993 25°52′ 115°0′ 574.037 571.560 0.034
58,531 29°43′ 118°17′ 611.368 606.906 0.011
59,134 24°29′ 118°4′ 668.842 662.234 0.003
59,218 23°8′ 106°25′ 560.815 558.501 0.038
59,855 19°14′ 110°28′ 712.904 701.144 0.000
59,948 18°14′ 109°31′ 621.550 614.316 0.002

Non-stationary,
significant negative
trend

53,959 35°3′ 111°3′ 514.790 514.282 0.113
54,429 40°12′ 117°57′ 610.525 608.439 0.043
54,511 39°48′ 116°28′ 613.470 609.271 0.013
56,492 28°48′ 104°36′ 628.929 626.319 0.032
57,051 34°48′ 111°12′ 509.027 507.383 0.056

a Model 0: stationary GEV distribution; Model 1: nonstationary GEV distribution with
time as the only covariate in location parameter.

§ Likelihood ratio test; p-value in bold indicate significance at 5% level.
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coefficients are reserved. Out of these stationary and nonstationary
models, the best fitting one is also selected according to AIC. Graphical
diagnostics are also explored for evaluating the quality of the model
fitting. Specifically, P-P plot is used, where a perfect fit is indicated if
all scatters follow the 1:1 line. For each AMP time series, once the best
fittingmodel has been identified, it is easy to compute the T-year return
level of precipitation extremes by substituting themaximum likelihood
estimates of three model parameters. The T-year return level denoted
using xT(t), either constant or varying, can be computed as:

xT tð Þ ¼ μ̂−
σ̂

ξ̂
1− − log 1−

1
T

� �� �−ξ̂
( )

ð6Þ

20-year and 50-year return levels of precipitation extremes for the year
1961 and 2013 will be predicted using Eq. (6) derived from the
corresponding GEV distribution.

4. Results

The stationarity test results showed that 563 AMP time series were
considered to be stationary at a 5% significance level. For the other 48
AMP time series, the null hypothesis ‘level’ or ‘trend’ stationarity was
rejected by KPSS test at the 5% level. The geographic locations of the
48 meteorological stations were presented in Fig. 3. It seemed that
these 48 stations were not clustered distributed but almost randomly
distributed over China. Next, the trends of the 48 nonstationary AMP
time series were tested using M-K test method, and the test results
were also displayed in Fig. 3. Therewere 25 nonstationary AMP time se-
ries showing significant (5% level) positive trends, and 5 nonstationary
AMP time series showing significant (also 5% level) negative trends. No
significant trendwas detected for the other 18 nonstationary AMP time
series. From Fig. 3, we found that AMP time series with significant
Fig. 3. Spatial distribution of nonstationary AMP time series over China at 5% significance level. These 48 nonstationary AMP time series are further classified into three categories: with
positive trends, with negative trend, and without significant trends 5% level.
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positive trends were mainly distributed in the southern and western
China. The nonstationary AMP time series without significant trends
were mainly located in eastern China.

The modeling results for the 30 nonstationary AMP time series with
significant positive or negative trends were summarized in Table 1. A
smaller AIC indicated a better fitting, and a p-value of likelihood test
b0.05 mean that the two models were significantly different at 5%
level. From Table 1, it could be seen that for most stations M1 with
time as the covariate performed better than M0 according to AIC and
likelihood ratio test. Fig. 4 showed the observed values of AMP, the
estimated median, and the 5th and 95th percentiles at 6 representative
stations (four with positive trends and 2 with negative trends). It was
worthy to note that although the nonstationary GEVmodel did not per-
form better than the stationary one in fitting AMP time series at station
Fig. 4. Summary of the modeling results of nonstationary AMP time series using GEV distribut
stations with negative trends). The results show the observed values of AMP (dots), the estima
57,405 (Fig. 4c), the trend in AMPwas still successfully captured by the
nonstationary GEV distribution model.

The correlations between nonstationary AMP time series without
significant trends and the four climate indices (EASMI, WPI, SOI, and
PDO) were shown in Fig. 5. At 5% significance level, there was no AMP
time series correlates with WPI time series. Two AMP time series at
station 52,218 and 53,929 only correlated with SOI time series at 5%
significance level. One AMP time series at station 58,236 (or 54,405)
was significantly correlated with EASMI (or PDO), respectively. For the
above four stations, one stationary and three nonstationary GEV distri-
butions with the correlated climate indictor as covariate were used to
fit the nonstationary AMP time series, respectively. Table 2 summarized
the fitting results, and Fig. 6 showed the observed values of AMP time
series, the estimated median, and the 5th and 95th percentiles of the
ion models with time as the covariate at 6 stations (4 stations with positive trends and 2
tes of the median (solid lines), and the 5th and 95th percentiles (dashed lines).



Fig. 5. Summary of correlations between nonstationary AMP time series without significant trends and four climate indices. Filled dots indicate that AMP time series were significantly
correlated with the climate index at 5% level, while the other circles indicate nonsignificant correlations.
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best fitting model. Here, M0 also denoted the stationary GEV distribu-
tion model, while M1 and M2 were nonstationary GEV distribution
model with the solely correlated climate index as covariate in parame-
ter μ and σ, respectively. In M3, both μ and σ were linearly dependent
on the climate index. For AMP time series at station 52,118, the station-
ary model M0 was the best one. Model M2 with EASMI as covariate
performed best, when AMP time series at station 58,236 was fitted.
For AMP time series at station 53,929 and 54,405, model M1 with SOI
or PDO as covariate in location parameter gave the bestfitting according
to AIC.

The last nonstationary AMP time series at station 57,707 was found
to be significantly correlated with both EASMI and PDO at 5% level
(Fig. 5). We applied one stationary and fifteen nonstationary GEV distri-
butionmodels tofit the AMP time series at station 57,707. Thefitting per-
formance was also evaluated according to AIC. The four best performing
Table 2
The modeling results for the 4 nonstationary AMP time series without significant trends.

Covariatea Station ID Lat (N) Lon (E) AICb

Model 0 Model 1 Model 2 Model 3

EASMI 58,236 32°18′ 118°18′ 637.45 638.36 636.03 636.35
SOI 52,118 43°16′ 94°42′ 396.42 397.26 397.69 397.04

53,929 35°12′ 107°48′ 517.13 516.69 519.13 518.63
PDO 54,405 40°24′ 115°30′ 499.01 497.66 500.26 498.39

a For the specific station, only the climate index is significantly correlatedwith the AMP
time series is used as covariate in nonstationary modeling.

b Model 0: stationary GEV distribution; M1–M3: nonstationary GEV distribution with cli-
mate index as covariate in location parameter, scale parameter, or both location and scale pa-
rameter simultaneously. AIC values in bold indicate the best fitting model.
GEV distribution models were M14 (μ ~ PDO, σ ~ EASMI + PDO, AIC =
545.65), M10 (σ ~ EASMI + PDO, AIC = 552.12), M4 (σ ~ PDO, AIC =
552.94), andM2 (σ ~ EASMI, AIC = 556.43). Fig. 7 showed the P-P plot
of the above four nonstationary GEV distribution models and that of the
stationary one with AIC = 562.85. The observed values of AMP, the
estimated median, and the 5th and 95th percentiles based on model
M14 were shown in Fig. 7. According to the diagnostics plots and AIC,
the selected modelM14 performed reasonably well.

Finally, the best fitting models were used to estimate the 20-year
and 50-year return levels of precipitation extremes at all 631 station
for the year 1961 and 2013, respectively. For the stationary AMP time
series, stationary GEV distribution was considered as the best fitting
model. Nonstationary AMP time series those had no significant trends
and did not correlate with any climate indictor significantly were also
fitted using stationary GEV distributionmodel. Fig. 8 showed the spatial
distribution of the 20-year and 50-year return levels of precipitation ex-
tremes over China in 1961 and 2013, respectively. As nonstationary
AMP time series with significant trends were mainly distributed in
western China and meteorological stations there were sparse, the
difference between return level in 1961 and that in 2013 was not very
obvious except in the western China.

5. Discussion

IPCC's fourth assessment report predicted that both frequency and
intensity of extreme precipitation events would increase worldwide
(IPCC, 2007). At national or regional scale, the changes of precipitation
extremes were also extensively studied, and significant trends in
precipitation extremes were detected in the United States, Australia,



Fig. 6. Summary of the best fittingGEVdistributionmodels for nonstationaryAMP time serieswithout any significant trends at 4 stations. The bestfittingGEV distributionmodelsmight be
stationary and nonstationary according to AIC in Table 2. The results show the observed values of AMP (dots), the estimates of the median (solid lines), and the 5th and 95th percentiles
(dashed lines).
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Europe, South and Southeast Asia (Klein Tank and Können, 2003;
Goswami et al., 2006; Fu et al., 2010; Boccolari and Malmusi, 2013;
Cino et al., 2014; Limsakul and Singhruck, 2016; Singh and Goyal,
2016). In China, significant trends in precipitation extremes have also
been detected with apparent regional differences (Zhai et al., 2005;
Qian and Qin, 2008; Xu et al., 2011; You et al., 2011; Deng et al., 2014;
Song et al., 2015; Sun et al., 2016). Under the background of climate
change, it is worthy to study precipitation extreme and assess its ad-
verse influence, because extreme precipitation events are considered
Fig. 7.Modeling results of the best fitting GEV distribution models for nonstationary AMP time
values of AMP (dots), the estimates of the median (solid lines), and the 5th and 95th percentil
as the major causes of severe floods in China (Zhai et al., 2005). In this
study, not only the trends of precipitation extremes were detected but
also the stationarity of AMP time series were examined. Nonstationary
extreme value analysis was applied to the precipitation extremes at
631 weather stations over China.

Firstly, nonstationary AMP time series with significant positive
trends at 5% level were detected at 25 weather stations, which were
mainly distributed in the southern and western China. This finding is
consistent with the distribution of stations with positive trends in
series without any significant trends at the station 57,707. (a) P-P plot; (b) the observed
es (dashed lines).



Fig. 8. Spatial distributions of the estimated 20-year and 50-year return levels of precipitation extremes based on the best fitting GEV distribution modes at all 631 stations in 1961 and
2013.
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annual total precipitation, summer total precipitation, and annual
precipitation extremes in China (Zhai et al., 2005; Feng et al., 2007;
Qian and Qin, 2008; Xu et al., 2011; You et al., 2011; Deng et al.,
2014). More specifically, a strengthening anticyclonic circulation,
increasing geopotential height and rapid warming over the Eurasian
continent have been considered as the reasons of climate extreme
changes in China (You et al., 2011; Sun et al., 2016). In this study, non-
stationary GEV distributionmodel performed better than the stationary
one for most nonstationary AMP time series with significant positive
trends. Although the positive trends have been detected in precipitation
extremes in western China, the total precipitation is still at low level.
Moreover, the increasing in annualmaximumor total precipitation usu-
ally accompanies with the increasing of temperature (You et al., 2011);
therefore, the climate in the western China is still vulnerable (Deng
et al., 2014).

Previous studies also found that annual total precipitation decreased
in northern China (Zhai et al., 2005; Feng et al., 2007; Qian and Qin,
2008; Xu et al., 2011; You et al., 2011; Sun et al., 2016), but we only
detected negative trends in 5 nonstationary AMP time series at 5% sig-
nificance level. Nonstationary GEV distribution model did not perform
better than the stationary equivalents in fitting AMP time series with
negative trend at two stations (53,959 and 57,051) in central China.
Another two stations (54,429 and 54,511) are located in northern
China. As these two stations were near the largest urban agglomeration
in northern China, the negative trends cannot simply attributable to
climate change. The remaining station (56,492) was near the Sichun
Basin, where decreasing trendwas also detected in annual total precip-
itation (Zhai et al., 2005).
The 631 stations almost cover a majority of land area in China;
however, non-stationarity and trends have not been detected in most
AMP time series as expected. Additionally, the correlations between non-
stationary AMP time series and climate indices were not very significant
either. In this study, the significance level was constrained at 5% that was
much stricter than that in previous studies (Feng et al., 2007). Thus, non-
stationarity, trends, and correlations were not easily detected. Moreover,
extreme precipitation was defined as the traditional annual maximum
daily precipitation. As we know the terrain in China is very complex
and diversified. For stations in northern and western China, AMP usually
occurs during small scale convective rainfall but not large scale cyclonic
rainfall. In the southern and southeastern China, extreme precipitation
events usually extend over two days due to the influence of typhoons
(Feng et al., 2007). Therefore, AMP could not fully represent the influence
of climate change on precipitation extremes. Another more representa-
tive precipitation index would be selected for extreme value analysis
under the background of climate change.

6. Conclusions

In this study we conducted a nonstationary extreme value analysis of
precipitation extremes using a comprehensive daily precipitation dataset,
fromwhich the time series of AMP (≥50 years) at 631meteorological sta-
tions in China were extracted. Extreme precipitation at 48 stations
showed significant non-stationarity at 5% level. Trends of AMP time series
from these nonstationary stations were further tested. Among these 48
non-stationarity AMP time series, 30 AMP time series have significant
trend, while the other 18 AMP time series have no significant trend.
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Nonstationary GEV distribution was then used to fit these nonstationary
AMP time series. For the 30 nonstationary AMP time series with signifi-
cant trends, the location parameter was varying with time. For the
other 18 nonstationary AMP time series with no significant trend, we
did correlation analysis with four climate indices EASMI, WPI, SOI, and
PDO; then, the location and scale parameters in the GEV distribution
weremodeled as functions of the significantly correlated climate indices.
The modeling results in this study showed that the nonstationary GEV
distributions performed better than their stationary equivalents. For
each station, 20-year and 50-year return levels of precipitation extremes
were estimated using the best fitting GEV distribution for the year 1961
and 2013, respectively. Because only a few of AMP time series were non-
stationary, the difference of 20-year and 50-year return levels of precipi-
tation extremes between stationary and nonstationary GEV models was
not very obvious over China.
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