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Background
Quantification of the net carbon exchange between atmosphere and terrestrial ecosys-
tem in global carbon cycle is becoming important with future potential sequestration 
influenced by increased atmospheric CO2 and changing climate (Nemani et  al. 2003). 
Therefore, accurately estimating the net ecosystem carbon exchange (NEE), which is 
the difference between photosynthetic uptake and release of CO2 by respiration from 
autotrophs (vegetation) and heterotrophs (free living fauna in the soil and symbiotic 
microorganisms), at the regional, continental or global scale, is helpful to improve our 
understanding of the feedbacks between terrestrial biosphere and atmosphere in the 
context of global change and facilitate climate policy-making (Canadell et al. 2000; Xiao 
et al. 2010; Tang et al. 2011; Hu et al. 2014).

Abstract 

Quantification of net ecosystem carbon exchange (NEE) between the atmosphere 
and vegetation is of great importance for regional and global studies of carbon bal-
ance. The eddy covariance technique can quantify carbon budgets and the effects of 
environmental controls for many forest types across the continent but it only provides 
integrated CO2 flux measurements within tower footprints and need to be scaled 
up to large areas in combination with remote sensing observations. In this study we 
compare a multiple-linear regression (MR) model which relates enhanced vegetation 
index and land surface temperature derived from the moderate resolution imaging 
spectroradiometer (MODIS), and photosynthetically active radiation with the site-level 
NEE, for estimating carbon flux exchange between the ecosystem and the environ-
ment at the deciduous-dominated Harvard Forest to three other methods proposed in 
the literature. Six years (2001–2006) of eddy covariance and MODIS data are used and 
results show that the MR model has the best performance for both training (2001–
2004, R2 = 0.84, RMSE = 1.33 g Cm−2 day−1) and validation (2005–2006, R2 = 0.76, 
RMSE = 1.54 g Cm−2 day−1) datasets comparing to the other ones. It provides the 
potential to estimate carbon flux exchange across different ecosystems at various time 
intervals for scaling up plot-level NEE of CO2 to large spatial areas.
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Traditionally, inventory studies of biomass and soil carbon were used to quantify an 
ecosystem NEE over a specific period (Clark et al. 2001). In recent years, the develop-
ment of eddy covariance technique provides an alternative approach to continuously 
measure long term carbon exchange at ecosystem scales and evaluating carbon bal-
ance as well as its seasonal or annual variations more precisely has become possi-
ble (Baldocchi et al. 2001). Carbon budgets and the effects of environmental controls 
have been quantified with this technique for many forest types across the continent 
(Powell et  al. 2006; Crawford and Christen 2014). However, the EC technique only 
provide integrated CO2 flux measurements over tower footprints with sizes and 
shape that vary with tower height, canopy physical characteristics and wind velocity 
(Osmond et  al. 2004). Scaling up beyond the tower footprint to large areas is criti-
cally important in the quantification of net CO2 exchange over regions or continents 
(Gitelson et  al. 2006, 2012; Xiao et  al. 2010). Satellite remote sensing provides eco-
system observations with temporally and spatially coverage, and is an attractive and 
powerful tool for up-scaling carbon fluxes. A number of remote sensing based eco-
system carbon exchange models have been proposed recently to extend the role of 
field plots to capture regional variation and to bridge a major gap between field and 
satellite observations (Gregory et al. 2010). For example, Gamon et al. (1997) propose 
the photochemical reflectance index (PRI) that can correlate with light use efficiency 
(LUE) for carbon exchange estimation at leaf, canopy, stand and landscape levels 
(Gamon et  al. 1997, 2001; Rahman et  al. 2001, 2005). Vegetation indices (VI) such 
as NDVI and the enhanced vegetation index (EVI) are also used to directly estimate 
carbon fluxes (Xiao et al. 2004; Sims et al. 2006; Wu et al. 2010, 2012). Gitelson et al. 
(2006) first introduce the greenness and radiation (GR) model utilizing the total chlo-
rophyll vegetation index and photosynthetically active radiation (PAR) to estimate 
carbon fixation in crops with high accuracy. The temperature and greenness (TG) 
model developed by Sims et al. (2008) that based on the MODIS EVI and land sur-
face temperature (LST) product is validated in a wide diversity of natural vegetation 
including both deciduous and evergreen forests across North America. These stud-
ies demonstrate that greenness indices like enhanced vegetation indices (EVI) and 
land surface water index (LSWI), land surface temperature (LST), photosynthetically 
active radiation (PAR) are reliable proxies indicating plant phenological stages, can-
opy stresses (air temperature, soil moisture, vapor pressure deficit) and environmen-
tal conditions (incoming solar radiation) in estimation of carbon uptake by terrestrial 
ecosystems referred to as gross ecosystem exchange (GEE), but the ability of these 
biophysical indices in capturing the net carbon uptake by forest ecosystems namely 
NEE is less well known. Therefore, the objectives of this study are: (1) to analyze the 
potential of EVI, LSWI, LST, and PAR in tracking NEE seasonal dynamics, (2) on the 
basis of previous studies, to compare a newly proposed MR model with other models 
for NEE estimation in the Harvard deciduous broadleaf forest by selectively incorpo-
rating these proxies. This study will explore the implication and ability of eddy covari-
ance and remote sensing observations for quantifying net carbon exchange between 
the atmosphere and forest ecosystems.
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Methods
Study site

The Harvard eddy flux tower (42°32′16″N and 72°10′17″W, 340 m elevation) is located 
in a mixed temperate forest, approximately 110  km west of Boston, Massachusetts, 
USA (Fig. 1). The vegetation is mainly deciduous forest, dominated by red oak (Quercus 
rubra), red maple (Acer rubrum), black birch (Betula lenta) and white pine (Pinus stro-
bus). The canopy height is approximately 20–24 m. Soil composition are primarily sandy 
loam glacial till with some alluvial and colluvial deposits. The climate is cool, moist tem-
perate with mean annual temperature 6.5  °C. Annual mean precipitation is 1000  mm 
and distributed approximately evenly throughout the year. Plant growing season usually 
start around mid-May (~day of year 130) and lasts about 160 days (Urbanski et al. 2007).

Eddy covariance data

The direct measurement of long-term carbon fluxes by eddy covariance technique pro-
vides the possibility of estimating local carbon sequestration rates of forests and differ-
ent land use types. EC also improves our understanding of the vulnerability of ecosystem 
carbon balance to climate changes. Furthermore, it can help to evaluate ecosystem mod-
els and provide data for land surface exchange schemes in global models (Valentini et al. 

Fig. 1 Study area in view using MODIS image of 2009 (DOY of 121), photos were downloaded from http://
atmos.seas.harvard.edu/lab/hf/hfsite.html

http://atmos.seas.harvard.edu/lab/hf/hfsite.html
http://atmos.seas.harvard.edu/lab/hf/hfsite.html
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2000). Eddy flux measurements of CO2, H2O and energy at Harvard Forest have been 
collected since 1991. The 6-year measurements (2001–2006) of NEE of CO2, daily PAR 
data are provided by researchers at Harvard Forest (http://public.ornl.gov/ameriflux/). 
Site-specific procedures, including quality control, flux corrections, and data editing 
are described elsewhere (Barford et al. 2001; Urbanski et al. 2007). The level 4 product 
consists of NEE data with four different time steps, including half-hourly, daily, weekly 
(8-day) and monthly. We utilize the weekly NEE data and the sums of PAR calculated 
over 8-day periods to match the compositing intervals of MODIS. The average of NEE 
and PAR over such a period was shown to largely eliminate micrometeorological errors 
caused by variable weather conditions or sampling procedures, with the remaining vari-
ability representing variation in ecosystem attributes (Oren et al. 2006).

MODIS data

The MODIS is a key instrument aboard the Terra and Aqua satellites, acquiring data in 
36 spectral bands from 450 to 2100 nm. Two collection 5 MODIS products the 8-day 
land surface reflectance (MOD09A1) and land surface temperature (MOD11A2) from 
2001 to 2006 are obtained from the 7 × 7 km subsets of MODIS products available at 
Oak Ridge National Laboratory’s Distributed Active Archive Center web site (http://
www.modis.ornl.gov.modis.index.cfm). Average values of the central 3  ×  3  km are 
extracted within the 7 × 7 km cutouts to better represent the flux tower footprint (Rah-
man et al. 2005).

Reflectance values of four spectral bands blue, red, near infrared (841–875 nm), and 
shortwave infrared (1628–1652 nm) in 2001–2006 are used to compute two vegetation 
greenness indices of the enhanced vegetation index (EVI) and the Land Surface Water 
Index (LSWI). EVI directly normalizes the reflectance in the red band as a function of 
the reflectance in blue band:

EVI is designated to primarily account for residual atmospheric reflectance, variable 
soil and canopy background reflectance (Huete et al. 2002). It has been successfully used 
for in temperate forests and shown to be much less sensitive to aerosols than NDVI 
(Xiao et al. 2003). The LSWI proposed by Xiao et al. (2002) is derived from the combi-
nation of near infrared (NIR) and shortwave infrared (SWIR) bands using the following 
equation:

where RNir and RSwir represent the reflectance of the near infrared bands and short 
infrared bands, respectively. LSWI has been shown to be sensitive to leaf water content 
(equivalent water thickness) (Jackson et al. 2004) and soil moisture overtime (Fensholt 
and Sandholt 2003).

The MODIS 8-day land surface temperature and Emissivity products (MOD11A2) in 
present works are retrieved at 1 km pixels by the generalized split-window algorithm and 
at 6 km grids by the day/night algorithm. In the split-window algorithm, emissivity in 

(1)EVI = 2.5×
RNir − RRed

1+ RNir + 6× RRed − 7.5× RBlue

(2)LSWI =
RNir − RSwir

RNir − RSwir

http://public.ornl.gov/ameriflux/
http://www.modis.ornl.gov.modis.index.cfm
http://www.modis.ornl.gov.modis.index.cfm
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bands 31 and 32 are estimated from land cover types, atmospheric column water vapor 
and lower boundary air surface temperature are separated into tractable sub-ranges for 
optimal retrieval. MODIS LST is a measure of soil or canopy leaf temperature at the 
surface, which agreed with in  situ measured LST within 1  K in the 263–322  K (Wan 
et al. 2002). Several researches have demonstrated that the satellite-derived LST also has 
a strong correlation with Re (Rahman et al. 2005; Schubert et al. 2010).

Carbon flux models

Many previous researches demonstrate that vegetation indices (EVI, LSWI), land sur-
face temperature (LST), photosynthetically active radiation (PAR) are reliable ecologi-
cal proxies indicating plant phenological stages, canopy stresses (air temperature, soil 
moisture, vapor pressure deficit) and environmental conditions (incoming solar radia-
tion et al.) in modeling carbon uptake by terrestrial ecosystems. The VI model directly 
utilizes vegetation indices to estimate carbon flux (Cf) in the formation:

Researchers (Gitelson et al. 2006; Sims et al. 2008; Wu et al. 2010) further introduce 
LST and PAR into model construction on the basis of VI to form the temperature and 
greenness (TG) and greenness and radiation (GR) models:

Our research proposes a predictive model incorporating MODIS and ground level 
data to estimate NEE. The derived MODIS EVI, LSWI, LST and in situ measured PAR 
are utilized to develop the new model. All the site level data are split into two sets: the 
training set (2001–2004) that containing 184 points and the test set (2005–2006) that 
containing 92 points, respectively. The optimum multi-linear regression (MR) model 
with the maximum determination coefficient (R2) and the minimal root mean square 
error (RMSE) is subsequently generated after analyzing the relationships between these 
proxies and NEE and the MR model is shown to substantially have the best performance 
while comparing to the previous ones.

Results and discussion
Correlation and seasonal variation of NEE with PAR, VI and LST

Table 1 shows that 2001–2006 time series NEE has significant relationships with all the 
proxies of PAR, VI (EVI, LSWI) and LST and it has a lower correlation coefficient with 
LSWI than with EVI. We further examined the seasonal time courses of NEE and the 
other three variables except LSWI at the Harvard Forest site. Results show that the sea-
sonal fluctuations of NEE can be partly explained by the seasonal variations of photosyn-
thetically active radiation and land surface temperature (Fig. 2). During winter times of 
2001–2006 (week of year—WOY ranging from 1 to 16 and from 39 to 46), the photosyn-
thetic activities of the deciduous broadleaf forest were directly inhabited by less incom-
ing sunlight and the low temperature as well as frozen soils because of the shortened 
sunshine duration (day length) and reduced solar energy received by the ground surface. 

(3)Cf ∝ VI

(4)Cf ∝ VI× LST

(5)Cf ∝ VI× PAR
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NEE were above zero and mainly dominated by ecosystem respiration (Re) because GEE 
were near zero in these months when the canopy is mostly bare after the deciduous 
leaves (oak and maple) fall off while the remaining few conifers are generally dormant 
to protect themselves against below freezing temperature. As solar radiation and sur-
face temperature increased from WOY 17 of each year, vegetations started to grow and 
the intensity of ecosystem photosynthesis activity gradually increased. Subsequently, 
the photosynthetic carbon fixation exceeded the release of CO2 though respiration and 
NEE reached the maximum peak during WOY 25–30. Later on, NEE declined gradually 
when forest began to wither accompanied by the reduced photosynthetic radiation and 
decreased temperature. The strong correlation between NEE and MODIS derived LST 
may be related with the good relationship between LST and ecosystem respiration but 
the underlying mechanism remains to be explored.

It could also be seen from Fig. 2 that the MODIS derived EVI had a strong seasonal 
variation and reflected well the growth status of the deciduous broadleaf forest. EVI 
successfully captured the beginning and ending of the vegetation growing phase in 
2001–2006. It firstly had a significant increase on WOY 15, reached the maximum value 

Table 1 Correlations of NEE and ecological proxies PAR, VIs, LST

2-tailed test of significance is used

* Correlation is significant at the 0.05 level

NEE PAR EVI LSWI LST

NEE 1 −0.67* −0.89* −0.47* −0.73*

PAR −0.67* 1 0.66* 0.17* 0.74*

EVI −0.89* 0.66* 1 0.43* 0.79*

LSWI −0.47* 0.17* 0.43* 1 0.06

LST −0.73* 0.74* 0.79* 0.06 1

Fig. 2 Seasonal dynamics of NEE, PAR, EVI, and LST in 2001–2006 at the Harvard Forest site are shown for 
each 8 day time interval. The horizontal axis represents week of year (WOY) from 1 to 46
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during 25–28 and then subsequently gradually declined to remain at a low level after 39. 
For all phenological indicators, the spring phenology is thought to exert a major effect 
on carbon balance. Earlier spring onset could consistently although not always signifi-
cantly lead to higher Re and GEE for seasonal and annual flux integrals. In response to 
this, the less increased Re comparing to GEE would cause an increase NEE of springtime 
and this phenomenon was more obvious in 2004 than the other years by a magnitude of 
2–4 g Cm−2 day−1.

Estimating NEE from incorporated MODIS and eddy covariance data

Based on analysis of the training dataset from 2001 to 2004 including PAR, EVI, LSWI 
and LST for the Harvard Forest we established the traditional VI, TG and GR models as 
follows:

Here VI refers to EVI because of its better performance than LSWI. It also performs 
better than all the other single variable models. Then we utilize the step wise linear 
regression to generate the best performance multi-variable regression model (MR) in 
which the more significantly correlated variables are incorporated and the less ones are 
excluded. The derived best performance MR model has with a maximum R2 of 0.84 and 
the minimal RMSE of 1.33 g Cm−2 day−1 in the following formation:

The MR model is run at 8-day time scale on the basis of the site-level PAR, EVI, LST to 
predict NEE and it shows the best performance while comparing the other three models 
for both training and test datasets (Fig. 3). We further evaluate this model using scatter 
plots of predicted seasonal NEE versus measured seasonal NEE in 2005–2006.

The dynamics of seasonal NEE predicted by the MR model based on the integration 
of MODIS and EC data generally agree well with the measured NEE from the ground 
CO2 tower system in 2005–2006 and this model can substantially improve the estima-
tion accuracy (Figs. 3, 4). It can be seen from Fig. 4 that the residuals are not randomly 
distributed with low NEE absolute values generally corresponding to lower prediction 
errors and high NEE absolute values corresponding to higher prediction errors. This 
phenomenon reveals that the carbon flux measurements uncertainties are directly pro-
portional to the flux magnitudes. There are some discrepancies between the predicted 
NEE and the corresponding measured values especially during the growing season 
(WOY 10–35). For example, during WOY 16–32 in 2006, the absolute magnitude of 
predicted CO2 releases into the atmosphere are generally lower than the ground level 
measurements mainly because that during the growing season especially summer the 
greenness of canopy leaves and vegetation density reach to high extent under the favora-
ble conditions of sufficient sunlight and precipitation. For the year of 2005 and 2006 at 
the deciduous dominated Harvard Forest, the predicted results generally agree well with 

(6)NEE = 7.351− 19.605× VI

(7)NEE = 1.594 − 19.647× VI× LST

(8)NEE = 3.291− 0.043× VI× PAR

(9)NEE = 8.106− 0.061PAR− 19.037EVI− 0.036LST
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ground observations, therefore, the proposed MR model is shown to be a reliable indica-
tor of seasonal NEE dynamics.

Uncertainty analysis

Although the proposed model has a better performance than the others in tracking sea-
sonal dynamics of ecosystem carbon exchange for the deciduous-dominated Harvard 
Forest, it still contains significant uncertainties in NEE estimation.

To match the compositing intervals of MODIS data, weekly NEE data are adopted 
in our research because seasonal fluctuations of CO2 exchange could be well reflected 
over such a period. However, the magnitudes of carbon sources and sinks fluctuate 

Fig. 3 Comparison between the MR model and the other current models for both training (2001–2004) and 
validation (2005–2006) datasets

Fig. 4 Seasonal variations of MR predicted NEE and tower measured NEE at the Harvard Forest site during 
the year 2005–2006. The horizontal axis represents week of year (WOY) from 1 to 46



Page 9 of 11Wang et al. SpringerPlus  (2016) 5:491 

remarkably on longer timescales such as annual due to geographical location, climate 
variation, land use change, disturbance by fire and pests, and age distribution as well as 
species composition of the ecosystem (Johnson et al. 2007). Therefore, the reliability of 
the MR model needs to be further validated across multiple biomes and over various 
time scales.

The proxies we selected here to estimate NEE in this study only includes PAR, EVI, 
and LST, it provides the opportunity to assess CO2 exchange directly from remote sens-
ing observations since MODIS already produces EVI and LST products and remote esti-
mation of PAR from MODIS aerosol type and atmospheric conditions would further 
make the model attractive for operational applications based on entirely remote sensing 
data (Liang et al. 2006). However, other factors that also have significant influences on 
CO2 exchange are not fully evaluated. NEE is the sum of canopy photosynthesis (GEE) 
and ecosystem respiration (Re), and GEE is related with sunlight, temperature, ambient 
humidity, canopy growth and nutrient status while Re has been identified to have con-
nections with soil moisture, air temperature, nutrient availability, stocks of living and 
dead biomass, seasonal carbon allocation as well as ecosystem productivity (Boone et al. 
1998). Therefore, further research may focus on the underlying mechanism of ecophysi-
ological interactions between the ecosystem and the environment variables.

Conclusion
Accurate estimation of terrestrial carbon exchange is of great importance for regional 
and global studies of carbon balance. We compare a multiple-linear regression model 
which relates vegetation indices and several environmental factors with the site-level 
NEE representing carbon flux exchange, with other models proposed in the literature in 
this mixed temperate forest. Results show that MR model could track seasonal fluctua-
tions of ecosystem carbon exchange better than the others at the deciduous-dominated 
Harvard Forest site level. The discrepancies between model simulated NEE and meas-
ured NEE may be attributed with different dynamical ranges in EVI and the relatively 
importance of various environmental factors. Given the best performance in the accu-
racy of carbon flux exchange estimation by the model developed here, it is worthwhile to 
evaluate the efficacy of this method across different ecosystems at various time intervals 
for scaling up plot-level NEE of CO2 to large spatial areas.
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