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Abstract Organochlorine pesticides (OCPs) have attracted
widespread concern because of their environmental persis-
tence and toxicity. The historical influence of different agri-
cultural land use types on soil concentrations of OCP residues
was investigated by collecting a total of 52 surface soil sam-
ples from long-term cotton fields and fields with other crops in
Lvdian township, Henan province, eastern central China. The
concentration, composition, and possible sources of 16 OCPs
were determined and a health risk assessment of these soils
was conducted. Hexachlorocyclohexane (HCH), heptachlor,
chlordane, and dichloro diphenyl trichloroethane plus its main
metabolites (DDTs) were the most frequently detected OCPs
with concentrations of 2.9–56.4 ng g−1, 4.3–14.0 ng g−1,
18.0–1254.4 ng g−1, and below detection limit (BDL)
−206.1 ng g−1, respectively. Analysis of variance of p,p-
DDE shows significant (P<0.05) differences while other
OCPs show no significant differences between historical cot-
ton fields and fields containing other crops. Compositional
analysis suggests that the HCH is derived mainly from the

use of lindane and that there are recent inputs. Analysis of
variance and compositional analysis indicate that the p,p-
DDE in surface soil from long-term cotton fields is derived
mainly from the aerobic biodegradation of historical residues.
The sum of carcinogenic risk values of OCPs for soil samples
were found to be 1.58×10−6, posing a low cancer risk to the
inhabitants of the region studied.
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Introduction

Soil contamination with organochlorine pesticides (OCPs)
such as dichlorodiphenyltrichloroethane (DDT), hexachloro-
cyclohexane (HCH), chlordane, and heptachlor is of great
concern due to their toxicity, bioaccumulation, and persistence
in the environment (Yang et al. 2005). the wide distribution of
their residues and their carcinogenic properties. Theymay also
affect the normal function of the endocrine and reproductive
systems of humans and wildlife (Xue et al. 2005). According
to the Stockholm Convention, DDT, hexachlorobenzene
(HCB), aldrin, chlordane, dieldrin, endrin, and heptachlor
are among the twelve most persistent organic pollutants
(POPs). Furthermore, HCH is considered to be a priority pol-
lutant by the United States Environmental Protection Agency
(US EPA) (UNEP 2003).

China is a major agricultural country and is the second
largest producer and consumer of pesticides globally (Zhang
et al. 2009). From 1952 to 1983 the country produced and
consumed more than 4 million tonnes of HCH insecticides
and 0.27 million tonnes of DDT (Zhang et al. 2009).
amounting to 46 and 20 % respectively, of global consump-
tion. Although the use of HCH and DDTwas banned in 1983,
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a number of OCPs continue to be used in some areas.
According to a report (Li et al. 2001). 3200 tonnes of lindane
(at least 99 % γ-HCH) has been used from 1991 to 2000.
Furthermore, DDT continues to be used in China to produce
dicofol as an intermediate (Wong et al. 2006).

Even though their production and usage have been official-
ly banned, OCP residues are still found in soils (Shi et al.
2005). waters (Wu et al. 2014). sediments (Yang et al. 2005;
Yang et al. 2010). and the air (Qiu et al. 2004). The residue
levels have declined substantially but they may still influence
environmental quality, human health, and food security (Wang
et al. 2007). For example, agricultural soils of the Yellow
River Delta (Da et al. 2014). of the Pearl River Delta (Li
et al. 2006). and of Jiangsu province (Yang et al. 2008) and
Beijing (Shi et al. 2005) have also been reported to contain
organochlorine pollution to varying extents. The highest res-
idue levels of DDT (484.24 μg kg−1) and HCH
(17.93 μg kg−1) have been found in cotton and paddy fields,
respectively (Cai 1996). in China. These investigations in-
volve waters, sediments, and agricultural land in general.
However, the surveys concentrated in specific land use types
are limited and the residue levels and human health risk are
unclear after several decades of degradation. In Luoyang, a
major cotton-producing area, large amounts of technical HCH
and DDT were used in cotton fields to control cotton boll-
worms because of a lack of effective biological control mea-
sures in the 1970s, and this has resulted in severe historical
environmental pollution. However, the current situation of
pesticide residues in the region also requires investigation af-
ter long periods of metabolism. We therefore targeted our
survey of the residue levels of historical cotton fields and
fields containing other crops. The objectives of the present
study were (1) to determine the concentrations and composi-
tion of 16 OCPs in agricultural soils in Lvdian township, an
area of extensive historical cotton cultivation in Henan prov-
ince, (2) to compare the residue levels of the 16 OCPs in two
historical land use types, (3) to identify the possible sources of
the DDTs and HCH, and (4) to assess the human health risk
due to their residues.

Materials and methods

Study area and sampling

Lvdian township is located in Luoyang City in the west of
Henan province and is characterized by a temperate monsoon
climate and four distinct seasons typified by cold and dry
winters and hot and rainy summers. The average annual tem-
perature is 14.5 °C and the mean annual precipitation is ap-
proximately 603 mm with most precipitation occurring from
July through September. The township is mainly hilly and
mountainous with two major rivers and covers an area of

124 km2, of which there are 5934 ha of cultivated land area
and the township has a population of 5.78 million.

A total of 52 surface (0–20 cm depth) soil samples
representing 10 field soils historically used to grow crops oth-
er than cotton and 42 historical cotton field soils were collect-
ed in May 2015. According to an earlier interview survey,
representative, and extensive historical cotton cultivation
fields in history were sampled as the main research areas,
and the sampling points of historical non-cotton fields were
sited near to the historical cotton fields. The locations of the
samples were relatively evenly distributed across the region
(Fig. 1) and the crops in the sampling areas were mainly wheat
and rape with a small number of vegetable fields and wood-
lands and some fallow areas. Samples were collected using a
stainless steel shovel. Approximately 500 g of soil were col-
lected from five points at each sampling site. The samples
were stored at 4 °C for a maximum of seven days before
analysis.

Sample extraction and analysis

The soil samples were freeze-dried and sieved through a 60-
mesh screen after stones and other debris were removed man-
ually to obtain a homogeneous matrix. The extraction method
was adapted from Sui et al. (2013). An aliquot of 1.00 g soil
sample was extracted with 20 mL of a mixed solution of
acetone and hexane (1:1v/v) for 30 min in an ultrasonic bath
followed by centrifugation and then filtered through a filter
paper with 5 g anhydrous sodium sulfate into a concentration
bottle. This process was repeated three times to ensure com-
plete extraction. The sample extracts were condensed to near
dryness with a rotary evaporator at 300 Pa and with the water
bath temperature maintained at 40 °C. Then 5 mL n-hexane
was added for solvent exchange and further concentrated to
1 mL. The concentrated solutions were purified by upward
passage through a glass column with neutral silica gel (4 g),
acidic silica gel (0.5 g), and anhydrous sodium sulfate (1 g)
(Zhang et al. 2009) with dichloromethane and n-hexane (4:1).
The liquids collected were condensed to 1 mL and transferred
to graduated test tubes. The samples were dried under a gentle
stream of nitrogen and pooled together in 1 mL n-hexane.

The reagents used, n-hexane and dichloromethane were of
high performance liquid chromatography (HPLC) grade and
the acetone was distilled to remove impurities. Moreover, the
anhydrous sodium sulfate and silica were dried at 400 °C for
6 h in a muffle furnace before use.

The OCP residues were analyzed by gas chromatography
(Agilent 7890B, Santa Clara, CA) equipped with a 63Ni elec-
tron capture detector (GC-ECD) and a 30 m×0.25 μm×
0.25 μm HP-5 capillary column. Ultra-high purity N2

(99.9999%)was used as the carrier gas. The oven temperature
program was as follows: injector and detector temperatures
were 200 and 300 °C, respectively, initial run temperature
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was set at 100 °C, ramped at 80 °C min−1 to 200 °C, then
ramped at 0.5 °C min−1 to 206 °C and held for 1 min, and then
ramped at 5 °Cmin−1 to 220 °C and held for 1 min, and finally
ramped at 10 °C min−1 to 270 °C.

Quality control and quality assurance

Quantification of OCPs was determined from an external stan-
dard comparing peak area. The correlation coefficients (r) of
calibration curves of OCPs were all higher than 0.999. A
procedural blank sample and a spiked sample with standards
were run to check for interference and cross-contamination
every 10 samples. The standard solutions were purchased
from J&K Scientific Ltd., Beijing, China. The pesticide recov-
eries were determined relative to the ratio of direct injection of
extract and the working standards (10 μg L−1) prepared in n-
hexane. Five clean soils were spiked with the standard solu-
tion, extracted and analyzed in the same way as the samples.
The results are listed in Table 1. The recovery values ranged
from 55 to 110%, of which the recovery ofα-HCHwas 55%,
lower than those of other HCH isomers due to its low boiling
point and volatility.

Statistical analysis

Differences in OCP concentrations between historical cotton
fields and other fields were compared by analyzing the

variances of the two land use types by one-way analysis of
variance (ANOVA) using the SPSS 17.0 software package.

Health risk assessment

Most organochlorine pesticide residues have led to growing
concern regarding their potential for contamination of the en-
vironment and also associated effects on human health (Shi
et al. 2005). Ordinarily, humans may be exposed to OCPs in
agricultural soils via ingestion, dermal contact, and inhalation
of soil particles. They were estimated based on the following
Eqs. (1), (2), and (3), which have been adapted from the U.S.
Environmental Protection Agency (USEPA 1997, 2009).

CRingestion ¼ C� IngR� EF� EDð Þ � CF� SF

BW� AT
ð1Þ

CRdermal ¼ C� SA� AF� ABS� EF� EDð Þ � CF� SF

BW� AT
ð2Þ

CRinhal ¼ C� InhR� BF� EF� EDð Þ � IUR

PEF� AT
ð3Þ

where C (mg kg−1) is the concentration of OCPs in soil;
CRingestion is the cancer risk via accidental ingestion of soil;
CRdermal is the cancer risk via dermal contact with soil; CRinhal

is the cancer risk via inhalation of soil; IngR is the ingestion
rate, 100 mg day−1 for adults (USEPA 2001). EF is the expo-
sure frequency, 350 days yr−1 (USEPA 1989). ED is the ex-
posure duration, 70 yr for adult and 12 yr for children (USEPA

Fig. 1 Map of the study area showing a relatively even distribution of sample sources
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1989). CF is the conversion factor, 1×10−6 kg mg−1 (USEPA
1997). SF is the oral slope factor, in this study, 2 kg day mg−1

(Ge et al. 2013). BW is the average body weight, in this study,
56.8 kg (MEP 2014). AT is the averaging time, 25,550 days
(Ge et al. 2013; USEPA 2001). SA is the exposed skin area, in
this study, 5700 cm2 (Qu et al. 2015). AF is the skin adherence
factor, 0.2 mg cm−2 day−1 (USEPA 2001). ABS is the dermal
absorption factor, for DDT, DDE, and DDD 0.2, for HCH 0.1,
for heptachlor 0.2, and for chlordane 0.05 (Health Canada
2004). GIABS is the fraction of contaminant absorbed in the
gastrointestinal tract, 1 (Ge et al. 2013; USEPA 1989). InhR is
the inhalation rate, 15.8 m3 d−1 (USEPA 1989). BF is the
absorption factor for the lungs, 1 (Ge et al. 2013; USEPA
1989). IUR is the inhalation unit risk, 0.57 mg−1 m−3 (Ge
et al. 2013; USEPA 1989). and PEF is the particle emission
factor, 1.36×109 m3 kg−1 (Ge et al. 2013; USEPA 1989).

Results and discussion

Soil OCP concentrations in the study area

Concentrations of OCPs detected in the surface soils from
historical cotton fields and other fields are shown in Table 2.
The total concentration of OCPs ranged from 85 to
1392 ng g−1 with an average value of 213 ng g−1 in historical
cotton fields and the corresponding values for other fields
were 101 to 394 ng g−1 with a mean value of 173 ng g−1.
HCH, heptachlor, and g-chlordane were detected in all of the
soil samples with detection rate up to 100 %. DDTs were
detected in all the historical cotton fields and in all but one
of the other fields. The concentration of HCH ranged from 6.5
to 56.4 ng g−1, with a mean value of 19.0 ng g−1 in historical
cotton fields, and ranged from 2.9 to 53.2 ng g−1 with a mean
of 21.6 ng g−1 in other fields. The mean residue level of hep-
tachlor was 9.6 ng g−1 in historical cotton fields and
10.3 ng g−1 in other fields. The largest residues of g-
chlordane were found in historical cotton fields with concen-
tration up to 1254 ng g−1, higher than the levels of other types
of organochlorine pesticide but the average (110 ng g−1) was

close to that (99.7 ng g−1) of other fields. The average con-
centration of DDTs (71.3 ng g−1) in historical cotton fields was
higher than that (38.5 ng g−1) in other fields, while the average
content of p,p-DDE was 50.3 ng g−1 in historical cotton fields
and 18.9 ng g−1 in other fields.

Technical DDT and HCH were produced and consumed
widely in China and they have therefore been generally con-
sidered to be representative of the composition of OCPs in
assessing pollution levels (Zhao et al. 2009). Some survey
results of agricultural soils in other regions are listed in
Table 3 for comparison with the present study. The soil con-
centrations of DDTs in our study are somewhat higher than
those reported in soils in Fujian but lower than those in soils of
Beijing, the northwest and cotton soils of Jiangsu province in
east China. According to the Environmental Quality Standard
for soils (GB15618-1995), the second grade value for DDTs
and HCHs is proposed to be <500 ng g−1 for arable land and
the first grade tolerance concentration of both DDTs and HCH
is <50 ng g−1. The GB15618-1995 standard may need to be
reviewed in the long-term. If we compare the concentrations
of DDTs and HCH in our study with soil environmental qual-
ity standard for agricultural land (draft for comment), about
23 % of soil samples in our area exceed the standard value for
DDTs and the content of HCH is below standard value. Other
organochlorine pesticides have no clear standards for arable
land. Consequently, the soils in this area can be considered to
be slightly polluted by OCPs.

Comparison of OCPs residues in different historical land
use types

The mean concentrations of OCPs in historical cotton fields
and other fields were compared by one-way analysis of vari-
ance. According to the results listed in Table 4, p,p-DDE
showed a difference at the 5 % level of significance. The
DDTs almost reached significance at the 5 % level with a
probability of 0.069 but other components showed no signif-
icance differences.

Generally, p,p-DDT is the active ingredient in DDTs and is
degraded to p,p-DDE under aerobic conditions and to p,p-

Table 1 Recoveries in the
analysis of organochlorine
pesticides by GC-ECD

Compound Recovery (%) RSD (%) Compound Recovery (%) RSD (%)

α-HCH 55 4.21 o,p-DDT 90 5.78

β-HCH 67 2.36 p,p-DDT 89 0.75

γ-HCH 57 3.97 Heptachlor 66 0.15

δ-HCH 67 1.69 γ-Chlordane 95 3.05

o,p-DDE 81 1.57 Endosulfan I 81 3.68

p,p-DDE 110 3.84 α-Chlordane 72 1.24

o,p-DDD 70 6.46 Dieldrin 78 6.15

p,p-DDD 71 1.26 Endosulfan sulfate 80 5.60

RSD relative standard deviation
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DDD under anaerobic conditions (Zhao et al. 2009). Over
recent decades the majority of DDT in soils has degraded to
DDE and DDD, resulting in the differences between historical
cotton fields and other fields. Moreover, the residual quantity
of DDEwas greater than that of DDT in historical cotton fields
(Table 2) and this confirms that the DDT was metabolized to
DDE. The residues of DDE in historical cotton fields appear to
be larger than those in non-cotton fields. In the environment,
α- and γ- HCH can be converted to β-HCH, which is more
stable than the other HCH isomers (Kim et al. 2007).
However, photochemical transformation and biodegradation
may transform γ-HCH to α-HCH (Strandberg et al. 1998).
DDTs are more persistent than HCH in soil and the residues

of HCH were lower than DDTs in surface soil (2.93 to
56.41 ng g−1 for HCH, and from BDL to 206.13 ng g−1 for
DDTs). In addition, the content of HCH in soil dramatically
decreased and showed no significance differences (Table 4)
between historical cotton fields and other fields due to the
effects of degradation over the long periods. Moreover, the
OCPs such as heptachlor and chlordane were widely used in
croplands to protect the crops from insect pests. In addition,
local farmers cultivated many cotton crops at the tops of hills
to obtain increased economics from a large-scale textile mill.
As would be expected, the level terrain and areas of slight
depression were relatively fertile land and were used to grow
food crops. The similar content of other OCPs in historical

Table 3 Comparison of DDT
and HCH levels (ng g−1) in the
agricultural soils with the levels
reported in other regions

Area Land use types DDTs HCH Reference

Range Mean Range Mean

Beijing Agricultural 7.2–2910.0 381.3 2.0–760.3 32.0 (Shi et al. 2005)

Northwestern Agricultural 67.1–79.4 74.4 86.1–93.9 91.1 (Wang et al. 2006)

Jiangsu Agricultural 4.2–678.6 190.4 –a – (Yang et al. 2008)

Fujian Agricultural 0.6–78.1 3.9 0.7–30.2 9.8 (Yang et al. 2012)

This study Agricultural 0–206.1 65.0 2.9–56.4 19.5

a no given value

Table 2 Concentrations (ng g−1) of individual organochloride pesticides in surface soils from historical cotton fields and other fields

Compound Range Mean Detection rate (%)

Historical cotton
fields

Historical non-
cotton fields

Historical
cotton fields

Historical non-
cotton fields

Historical
cotton fields

Historical non-
cotton fields

α-HCH BDL–12.8 BDL–3.4 1.7 0.7 40.5 20.0

β-HCH BDL–3.9 BDL–2.2 0.3 0.4 21.4 30.0

γ-HCH 2.7–19.5 2.9–15.0 7.0 7.3 100.0 100.0

δ-HCH BDL–28.0 BDL–45.0 10.0 13.2 95.2 90.0

HCH 6.5–56.4 2.9–53.2 19.0 21.6 100.0 100.0

o,p-DDE BDL–5.8 BDL–3.4 0.7 1.0 23.8 30.0

p,p-DDE 8.4–176.7 BDL–46.0 50.3 18.9 100.0 90.0

o,p-DDD BDL–2.2 BDL 0.1 0 2.4 0

p,p-DDD BDL–10.5 BDL–3.6 0.5 0.4 7.1 10.0

o,p-DDT BDL–25.4 BDL–6.9 4.3 3.4 59.5 60.0

p,p-DDT 6.3–43.6 BDL–59.5 15.3 14.8 100.0 90.0

DDTs 20.0–206.1 BDL–79.2 71.3 38.5 100.0 90.0

Heptachlor 4.3–14.0 6.5–13.5 9.6 10.3 100.0 100.0

g-Chlordane 18.0–1254.4 48.5–317.8 109.9 99.7 100.0 100.0

Endosulfan I BDL–3.3 BDL 0.4 0 14.3 0

a-Chlordane BDL BDL 0 0 0 0

Dieldrin BDL BDL 0 0 0 0

Endosulfan sulfate BDL BDL 0 0 0 0

OCPs 85.0–1392.1 101.3–393.8 212.7 173.3 100.0 100.0

BDL below detection limit;HCH sum ofα-,β-, γ-, and δ-HCH isomers;DDTs sum of DDT plus its main metabolites o,p-, p,p-DDE and o,p-, p,p-DDD;
OCPs, sum of 16 organochloride pesticides
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cotton fields and other fields may be attributable to the wide
use of OCPs historically and perhaps also to transfer due to
rainfall.

Composition and source identification

Generally, technical HCH consists mainly of 55–80 % α-
HCH, 5–14 % β-HCH, 8–15 % γ-HCH, and 2–10 % δ-
HCH and lindane mostly comprises >99 % γ-HCH (Ge
et al. 2013). If there were no fresh inputs of technical HCH,
β-HCH was usually the predominant isomer in soils owing to
its resistance to hydrolysis and environmental degradation as
well as the transformation of α-HCH and γ-HCH. As can be
seen in Fig. 2, the proportion of HCH isomers followed the
order δ-HCH>γ-HCH>α-HCH>β-HCH and their corre-
sponding contributions were approximately 53, 36, 10, and
1 %, respectively. The percentages of α-HCH and β-HCH
decreased compared with the primitive components but the

percentages of δ-HCH and γ-HCH increased. Generally, α-,
β- and γ-HCH are the most common isomers of HCHs in the
environment but much higher concentrations of δ-HCH were
detected in our present study, similar to the results obtained
from the Beijing Guanting reservoir (Xue et al. 2006) and
surface sediments of Taihu Lake (Zhao et al. 2009).
However, the explanations require further study. Technical
HCH usually posses a α-HCH/γ-HCH ratio of 4–7 and a
β-/(α+γ)–HCH ratio of 0.06–0.17. For lindane, the α-
HCH/γ-HCH ratio is nearly zero and the β-/(α+γ)–HCH
ratio is less than 0.06. Therefore, the values of α-/γ-HCH in
soil samples can be used to identify the sources of HCHs. As
shown in Fig. 3, the ratio of α-HCH/γ-HCH lay between 0
and 3.30 with a mean value of 0.41 in this study area, much
lower than that of technical HCH. This indicates that the
source of HCH might be the use of lindane (Yang et al.
2010). The β-/(α+γ)–HCH ratio can be used to identify the
history of HCH use, and 0.5 has been used as a threshold (Liu
et al. 2012). According to the analysis in the present study, the
β- / (α+γ) -HCH ratios of the all soil samples were 0.5,
suggesting some recent use of lindane or the existence of an
atmospheric source for the input (Liu et al. 2012).

As shown in Figs. 2 and 3, δ-HCH and γ- HCH are the
main residues of HCH in all soil samples, and the residue
contents in the most samples of historical cotton fields are
larger than that in historical non-cotton fields although the
analysis of variance showed no significant differences (Table
4). Theα-HCH/γ-HCH ratio was <4 for all samples, while the
value of 80 % of non-cotton field points is 0, which indicating
that the HCH in non-cotton fields was mostly derived from
lindane. The α-/γ-HCH for the majority of historical cotton
fields was >0, implying that the source of HCH was the ap-
plication of technical HCH and lindane. This phenomenon
may result from the wide application of technical HCH in
cotton fields for prevention of insect infestation. After several
decades of degradation, the residues of HCH in cotton fields

Table 4 Analysis of variance of individual organochloride pesticides
comparing historical cotton fields and fields with other cropping histories

Component Significance Component Significance

α-HCH 0.226 p,p-DDT 0.886

β-HCH 0.822 DDTs 0.069

γ-HCH 0.832 Heptachlor 0.505

δ-HCH 0.177 γ-Chlordane 0.885

HCH 0.440 Endosulfan I 0.214

o,p-DDE 0.632 α-Chlordane –a

p,p-DDE 0.049* Dieldrin –

o,p-DDD 0.63 Endosulfan sulfate –

p,p-DDD 0.817 OCPs 0.594

o,p-DDT 0.631 – –

*p<0.05
a no given value;

Fig. 2 Average composition of HCHs and DDTs in the surface soils
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were still detectable and showed a high content versus histor-
ical non-cotton fields.

Although the use of technical DDT in China was officially
banned in 1983, about 4000–6000 tonnes of DDT continued
to be produced annually for export and for use as an interme-
diate in the production of dicofol (Wei et al. 2007). There
remain currently two DDT technical production enterprises
and one DDT processing enterprise together with three to five
factories producing dicofol in China (NIP 2007). DDT is usu-
ally degraded to the stable and toxic metabolites DDE and
DDD in soils. As shown in Fig. 2, p,p-DDE was the predom-
inant residue and this may reflect the degradation of DDT
under aerobic conditions in the surface soils over a period of
several years. It is also noteworthy that α-chloro-DDT, one of
the components of dicofol, can also be degraded to p,p-DDE
(Brown et al. 1986). The sources of the DDTs may be evalu-
ated by analyzing their components in the study area.
Technical DDT consists of p,p-DDT (85 %) and o,p-DDT
(15 %) while dicofol often contains impurities in the form of
DDTs. The ratios of o,p-DDT / p,p-DDT ranged from 0.2 to
0.3 in technical DDT and ranged from 1.3 to 9.3 in dicofol
(Qiu et al. 2005; Yang et al. 2010). Therefore, a o,p-DDT / p,p-
DDT ratio of <0.2 indicates that technical DDTwas the main
source while a high ratio is thought to indicate pollution by
dicofol (Qiu et al. 2005). The o,p-DDT/p,p-DDT ratios found
are shown in Fig. 4 and range from 0 to 2.7 with an average
value of 0.28. All the ratios were 1.3 except for one sample,
suggesting that the detectable DDTs were derived from both
technical DDT and dicofol. A (DDE+DDD)/DDTs ratio of
>0.5 can be judged to indicate aged DDTs and a ratio much
lower than 0.5 can be considered to show recently input DDT
(Li et al. 2006). According to Fig. 5, the values in most sam-
ples were 0.5, indicating that long-term weathering of DDTs
was the primary source and a minority of samples contained
newly input DDTs. DDT can be degraded to DDE under

aerobic conditions and to DDD under anaerobic conditions.
Hence, the p,p-DDD/p,p-DDE ratio can reflect the biodegra-
dation conditions of p,p–DDT in the region. A p,p-DDD/p,p-
DDE ratio of <1 implies the predominant occurrence of aero-
bic degradation (Wu et al. 2013). In the present study the p,p-
DDD/p,p-DDE ratio ranged from 0 to 0.94 with a mean of
0.03, suggesting that the parent DDTs decomposed mainly
under aerobic conditions and this is consistent with the
plowing method used locally.

According to Fig. 2, the predominant metabolites, DDE
and DDD, accounted for 70 % in DDT residues. Moreover,
analysis of variance of p,p-DDE shows significant (P<
0.05) differences between the two land use types
(Table 4). In addition, as can be seen in Figs. 4 and 5, the
content of DDT and DDE+DDD in the majority of samples
from historical cotton fields was larger than that in non-
cotton fields except for one sample. However, the o,p-
DDT/p,p-DDT ratio in most samples ranged from 0.2 to
1.3, suggesting that the source of DDTs was technical
DDT combined with dicofol and was undergoing long-
term weathering. This could be attributed to vast usage of
technical DDT in cotton fields and degradation in the soil.
DDE and DDD, the main metabolites of DDT, accumulate
in the environment, leading to DDD and DDE becoming
the main components of DDTs in the study region.

Heptachlors were produced and used in China in the 1960s
and 1970s as a pesticide primarily used against soil insects and
termites (Wu et al. 2014) as well as termite control in railway
sleepers, and production was halted in 1978. In the present
study, the content of heptachlor ranged from 4.30 to
13.95 ng g−1 with a mean value of 9.64 ng g−1 in historical
cotton fields and 6.49-13.5 ng g−1 with an average of
10.3 ng g−1 in other fields. In all soil samples tested, the con-
centrations of heptachlor were much higher than that of hep-
tachlor epoxide (below detection limit, BDL), indicating that

Fig. 3 Relationship between α-
HCH and γ-HCH in the surface
soils tested
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recent applications of heptachlor might be the primary source
of fresh inputs of heptachlor.

Chlordane was also widely used against infestation by
insects (Boonyatumanond et al. 2002) such as mole
crickets, cutworms and white ants. Chlordane was pro-
duced at a rate of 9000 tonnes per annum since the
1950s, and it is still produced and applied. In general, it
is a mixture of γ-chlordane, α-chlordane, and heptachlor
and the ratio of α-chlordane/γ-chlordane is about 0.77
(Zhang et al. 2006). An α-chlordane/γ-chlordane ratio
1.0 suggests that the chlordane is derived mainly from
legacy use (Zhao et al. 2013). The ratio in all of our
samples was far below 1.0, implying that the chlordane
was derived primarily from new inputs in the survey area.

Endosulfan is one of the few organochlorine insecti-
cides that are still in use globally (Qiu et al. 2004).
Technical endosulfan typically contains 70 % endosulfan
I and 30 % endosulfan II, and endosulfan sulfate is the
dominant component in the environment as a result of the
photolysis and biodegradation of endosulfan. The detec-
tion rate of endosulfan I in our study area was very low at

14.3 % with none detected in historical cotton fields or
other fields and no endosulfan sulfate was detected in the
surface soils. Dieldrin (which was not produced or used in
China) was not detected in this region.

In summary, source analysis indicates that the OCP
residues are derived not only from historical use but also
occur in new inputs, especially heptachlor and chlordane.
HCH and DDTs were applied mainly as pesticides in cot-
ton fields and they may still have an impact on the envi-
ronment despite several decades of decomposition.
Although current levels of HCH are below the first stan-
dard permissible value at the majority of sampling sites,
the residue contents in most samples from historical cot-
ton fields are larger than those in historical non-cotton
fields. The HCH residue is derived from lindane for most
non-cotton fields but technical HCH mixed with lindane
for the majority of historical cotton. DDE residues
showed significant differences with the residual quantities
apparently higher in historical cotton fields than in fields
with other cropping histories, and this may be attributed
to the widespread application of DDTs in cotton fields.

Fig. 4 Concentration of o,p-
DDT versus the concentration of
p,p-DDT in surface soils from
Lvdian township

Fig. 5 Relationship between
DDD+DDE and DDTs in surface
soils
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Health risk assessment

The results of human risk assessment for OCPs are shown in
Table 5. The ATSDR (Agency for Toxic Substances and
Disease Registry) (1995) standard proposes the following
qualitative ranking of cancer risk: very low (value<10−6),
low (10−6≤value<10−4), moderate (10−4≤value<10−3), high
(10−3≤value<10−1), and very high (value≥10−1). The cancer
risk values of heptachlor and HCH are all <10−6, implying that
they represent a very low cancer risk in this region. There are
three sampling sites with a CR for chlordane of >10−6, illus-
trating that chlordane may pose a low CR. Although the CR
via ingestion and inhalation of DDTs are all <10−6, the sum-
mation of the three exposure pathways for 14 sampling points
are >10−6 though the average CR value is 0.7198. As shown in
Table 5, there are 35 sampling points where the∑ CR value of
OCPs is 10−6, accounting for 67 % of the total number of
samples.

Conclusions

The present study examined the contents and distribution of
OCP residues in 52 surface soil samples from the Lvdian
region. The OCP concentrations varied from 85 to

1392 ng g−1 with a mean of 205 ng g−1. HCH, heptachlor,
and chlordane showed a 100 % detection rate. The main pes-
ticides, HCH and DDT, were detected in historical cotton
fields and fields with other cropping histories, with mean con-
centrations of 19.0, and 21.6 ng g−1 for HCH, and 71.3, and
38.5 ng g−1 for DDTs. The composition and source identifi-
cation of HCH show that the contribution of δ-HCH was
approximately 53 %, the source of HCH might be attributed
mainly to the use of lindane. Moreover, a recent usage of
lindane or an atmospheric source for the input is indicated.
Though there has been no cotton cultivation for decades, the
residue of DDE in historical cotton fields are significantly
higher (P<0.05) than those in other fields, and this can be
attributable to the degradation of the extensively used DDT
for cotton in historically. Also, p,p-DDE was the predominant
component of DDTs, resulting from the degradation of DDT
under aerobic conditions. The source identification shows that
DDTs are derived mainly from historical residues of DDTand
a few samples contained newly input DDT. Moreover, the ∑
CR average value of OCPs is 1.58×10−6, indicating that cur-
rent levels of OCP residues in agricultural soils pose a rela-
tively low cancer risk in Lvdian region.
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